1. Biswal, S. S., D. P. Kar, and S. Bhuyan, "Parameter trade-off between electric load, quality factor and coupling coefficient for performance enrichment of wireless power transfer system," Progress In Electromagnetics Research M, Vol. 91, 49-58, 2020.
doi:10.2528/PIERM20010902 Google Scholar
2. Huang, Y. C., C. H. Liu, Y. Xiao, and S. Y. Liu, "Separate power allocation and control method based on multiple power channels for wireless power transfer," IEEE Trans. Power Electron., Vol. 35, No. 9, 9046-9056, 2020.
doi:10.1109/TPEL.2020.2973465 Google Scholar
3. Wang, M., J. Feng, Y. Fan, M. Shen, J. Liang, and Y. Shi, "A novel planar wireless power transfer system with distance-insensitive characteristics," Progress In Electromagnetics Research Letters, Vol. 76, 13-19, 2018.
doi:10.2528/PIERL18032301 Google Scholar
4. Sahany, S., S. S. Biawal, D. P. Kar, P. K. Sahoo, and S. Bhuyan, "Impact of functioning parameters on the wireless power transfer system used for electric vehicle charging," Progress In Electromagnetics Research, Vol. 79, 187-197, 2019.
doi:10.2528/PIERM18092610 Google Scholar
5. Wang, Q., W. Che, M. Dionigi, F. Mastri, M. Mongiardo, and G. Monti, "Gains maximization via impedance matching networks for wireless power transfer," Progress In Electromagnetics Research, Vol. 164, 135-153, 2019.
doi:10.2528/PIER18102402 Google Scholar
6. Parise, M. and G. Antonini, "On the inductive coupling between two parallel thin-wire circular loop antennas," IEEE Trans. Electromagn. Compat., Vol. 60, No. 6, 1865-1872, 2018.
doi:10.1109/TEMC.2018.2790265 Google Scholar
7. Parise, M., L. Lombardi, F. Ferranti, and G. Antonini, "Magnetic coupling between coplanar filamentary coil antennas with uniform current," IEEE Trans. Electromagn. Compat., Vol. 62, No. 2, 622-626, 2020.
doi:10.1109/TEMC.2019.2904516 Google Scholar
8. Shinohara, N., "The wireless power transmission: Inductive coupling, radio wave, and resonance coupling," Wiley Interdisciplinary Rev.: Energy Environ., Vol. 1, No. 3, 337-346, 2012.
doi:10.1002/wene.43 Google Scholar
9. Ren, J. S., P. Hu, D. S. Yang, and D. Liu, "Tuning of mid-range wireless power transfer system based on delay-iteration method," IET Power Electronics, Vol. 9, No. 8, 1563-1570, 2016.
doi:10.1049/iet-pel.2015.0291 Google Scholar
10. Jiwariyavej, V., T. Imura, and Y. Hori, "Coupling coefficients estimation of wireless power transfer system via magnetic resonance coupling using information from either side of the system," IEEE J. Emerging Sel. Topics Power Electron., Vol. 3, No. 1, 191-200, 2015.
doi:10.1109/JESTPE.2014.2332056 Google Scholar
11. Casanova, J. J., Z. N. Low, and J. Lin, "A loosely coupled planar wireless power system for multiple receivers," IEEE Trans. Ind. Electron., Vol. 56, No. 8, 3060-3068, 2009.
doi:10.1109/TIE.2009.2023633 Google Scholar
12. Ye, Z. H., Y. Sun, X. Dai, C. S. Tang, Z. H. Wang, and Y. G. Su, "Energy efficiency analysis of U-coil wireless power transfer system," IEEE Trans. Power Electron., Vol. 31, No. 7, 4809-4817, 2017. Google Scholar
13. Costanzo, A., et al., "Conditions for a load-independent operating regime in resonant inductive WPT," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 4, 1066-1076, 2017.
doi:10.1109/TMTT.2017.2669987 Google Scholar
14. Hui, S. Y. R., W. X. Zhong, and C. K. Lee, "A critical review of recent progress in mid-range wireless power transfer," IEEE Trans. Power Electron., Vol. 29, No. 9, 4500-4511, 2014.
doi:10.1109/TPEL.2013.2249670 Google Scholar
15. Shin, J., S. Shin, Y. Kim, S. Ahn, S. Lee, G. Jung, S. J. Jeon, and D. H. Cho, "Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles," IEEE Trans. Ind. Electron., Vol. 61, No. 3, 1179-1192, 2014.
doi:10.1109/TIE.2013.2258294 Google Scholar
16. Nguyen, D. H., "Electric vehicle — Wireless charging-discharging lane decentralized peer-to-peer energy trading," IEEE Access, Vol. 8, 179616-179625, 2020.
doi:10.1109/ACCESS.2020.3027832 Google Scholar
17. Huang, L. Y., A. Murray, and B. W. Flynn, "A high-efficiency low-power rectifier for wireless power transfer systems of deep micro-implants," IEEE Access, Vol. 8, 204057-204067, 2020.
doi:10.1109/ACCESS.2020.3036703 Google Scholar
17. Huang, L. Y., A. Murray, and B. W. Flynn, "A high-efficiency low-power rectifier for wireless power transfer systems of deep micro-implants," IEEE Access, Vol. 8, 204057-204067, 2020.
doi:10.1109/ACCESS.2020.3036703 Google Scholar
18. Huang, L. Y., A. Murray, and B. W. Flynn, "Optimal design of a 3-coil wireless power transfer system for deep micro-implants," IEEE Access, Vol. 8, 193183-193201, 2020.
doi:10.1109/ACCESS.2020.3031960 Google Scholar
19. Riehl, P., et al., "Wireless power systems for mobile devices supporting inductive and resonant operating modes," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 3, 780-790, Mar. 2015.
doi:10.1109/TMTT.2015.2398413 Google Scholar
20. Zhang, Y. M. and Z. M. Zhao, "Frequency splitting analysis of two-coil resonant wireless power transfer," IEEE Antennas Wireless Propag. Lett., Vol. 13, 400-402, 2014.
doi:10.1109/LAWP.2014.2307924 Google Scholar
21. De Miranda, C. M. and S. F. Pichorim, "A self-resonant two-coil wireless power transfer system using open bifilar coils," IEEE Trans. Circuits Syst., II, Exp. Briefs, Vol. 64, No. 6, 615-619, 2017.
doi:10.1109/TCSII.2016.2595402 Google Scholar
22. Wang, S. M., Z. Y. Hu, C. C. Rong, X. Tao, C. H. Lu, J. F. Chen, and M. H. Liu, "Optimisation analysis of coil configuration and circuit model for asymmetric wireless power transfer system," IEEE Antennas Wireless Propag. Lett., Vol. 12, No. 7, 1132-1139, 2018. Google Scholar
23. Zhong, W. and S. Y. R. Hui, "Maximum energy efficiency operation of series-series resonant wireless power transfer systems using on-off keying modulation," IEEE Trans. Power Electron., Vol. 33, No. 4, 3595-3603, 2018.
doi:10.1109/TPEL.2017.2709341 Google Scholar
24. Lyu, Y. L., F. Y. Meng, G. H. Yang, B. J. Che, Q. Wu, L. Sun, D. Erni, and J. L. W. Li, "A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer," IEEE Trans. Power Electron., Vol. 30, No. 11, 6097-6107, 2015.
doi:10.1109/TPEL.2014.2387835 Google Scholar
25. Lim, Y., H. Tang, S. Lim, and J. Park, "An adaptive impedance-matching network based on a novel capacitor matrix for wireless power transfer," IEEE Trans. Power Electron., Vol. 29, No. 8, 4403-4413, 2014.
doi:10.1109/TPEL.2013.2292596 Google Scholar
26. Wang, M., J. Feng, Y. Y. Shi, and M. H. Shen, "Demagnetization weakening and magnetic field concentration with ferrite core characterization for efficient wireless power transfer," IEEE Trans. Ind. Electron., Vol. 66, No. 3, 1842-1851, 2019. Google Scholar
27. Ricketts, D. S., M. Chabalko, and A. Hillenius, "Tri-loop impedance and frequency matching with high-Q resonators in wireless power transfer," IEEE Antennas Wireless Propag. Lett., Vol. 13, 341-344, 2014.
doi:10.1109/LAWP.2014.2299896 Google Scholar
28. Stein, A. L. F., P. A. Kyaw, and C. R. Sullivan, "Wireless power transfer utilizing a high-Q self-resonant structure," IEEE Trans. Power Electron., Vol. 34, No. 7, 6722-6735, 2019.
doi:10.1109/TPEL.2018.2874878 Google Scholar
29. Wang, M., C. Zhou, M. H. Shen, and Y. Y. Shi, "Frequency drift insensitive broadband wireless power transfer system," AEU --- Int. J. Electron. Commun., Vol. 117, 2020. Google Scholar
30. Chen, Y. F., W. X. Xiao, Z. P. Guan, B. Zhang, D. Y. Qiu, and M. Y. Wu, "Nonlinear modeling and harmonic analysis of magnetic resonant WPT system based on equivalent small parameter method," IEEE Trans. Ind. Electron., Vol. 66, No. 8, 6604-6612, 2019.
doi:10.1109/TIE.2019.2896077 Google Scholar
31. Assawaworrarit, S., X. F. Yu, and S. H. Fan, "Robust wireless power transfer using a nonlinear parity-time-symmetric circuit," Nature, Vol. 546, No. 7658, 387-390, 2017.
doi:10.1038/nature22404 Google Scholar
32. Abdelatty, O., X. Y. Wang, and A. Mortazawi, "Position-insensitive wireless power transfer based on nonlinear resonant circuits," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 9, 3844-3855, 2019.
doi:10.1109/TMTT.2019.2904233 Google Scholar
33. Kovacic, I. and M. J. Brennan, The Duffing Equation: Nonlinear Oscillators and Their Behavior, Wiley, 2011.
doi:10.1002/9780470977859
34. Wang, X. Y. and A. Mortazawi, "Bandwidth enhancement of RF resonators using duffing nonlinear resonance for wireless power applications," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 11, 3695-3702, 2016.
doi:10.1109/TMTT.2016.2603984 Google Scholar
35. Vernizzi, G. J., S. Lenci, and G. R. Franzini, "A detailed study of the parametric excitation of a vertical heavy rod using the method of multiple scales," Meccanica, Vol. 55, No. 12, 2423-2437, 2020.
doi:10.1007/s11012-020-01247-6 Google Scholar
36. Gargour, C. S. and V. Ramachandran, "A simple design method for transitional Butterworth-Chebyshev filters," J. Instit. Electron. Radio Eng., Vol. 58, No. 6, 291-294, 1988.
doi:10.1049/jiere.1988.0072 Google Scholar