Vol. 101
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-02-15
Laser Monitor for Studying the Combustion of Thin Layers of Metal Nanopowders
By
Progress In Electromagnetics Research M, Vol. 101, 37-45, 2021
Abstract
In this paper, we propose a laser monitor with a horizontally located observation area for studying laser initiation and combustion of thin layers of metal nanopowders. Three configurations of the optical scheme with different inputs of igniting laser radiation and different magnifications are considered. Visualization of combustion of a 0.4 mm layer of aluminum nanopowder demonstrated the possibility of studying the surface of a nanopowder thin layer during combustion using a laser monitor. The bright glowing of the sample and the bright radiation of the igniting laser do not interfere with the imaging of the surface. The proposed system allows us to study surface changes caused by the propagation of combustion waves. It is demonstrated that in the region of laser initiation, combustion proceeds in one-stage, and combustion products are formed during laser action. Outside the initiation area, combustion proceeds in two stages. The results reveal the prospects for designing a laser monitor for studying the combustion of thinner layers of metal nanopowders.
Citation
Fedor Alexandrovich Gubarev Andrei Vladimirovich Mostovshchikov Anatoliy Ignatievich Fedorov Lin Li , "Laser Monitor for Studying the Combustion of Thin Layers of Metal Nanopowders," Progress In Electromagnetics Research M, Vol. 101, 37-45, 2021.
doi:10.2528/PIERM21011004
http://www.jpier.org/PIERM/pier.php?paper=21011004
References

1. Zarko, V. E. and A. A. Gromov, Energetic Nanomaterials: Synthesis, Characterization, and Application, Elsevier, Amsterdam, 2016.

2. Gromov, A. A., T. A. Khabas, A. P. Il'in, E. M. Popenko, V. A. Arkhipov, A. G. Korotkikh, A. A. Dits, and L. O. Tolbanova, Combustion of Metal Nanopowders, Deltaplan, Tomsk, 2008.

3. Rogachev, A. S. and A. S. Mukasyan, "Combustion of heterogeneous nanostructural systems (Review)," Combust. Explos. Shock Waves, Vol. 46, 243-266, 2010.
doi:10.1007/s10573-010-0036-2

4. Abdel-Hafez, A. A., M. W. Brodt, J. R. Carney, and J. M. Lightstone, "Laser dispersion and ignition of metal fuel particles," Rev. Sci. Instrum., Vol. 82, No. 6, 064101, 2011.
doi:10.1063/1.3598341

5. Naumov, I. S., "Simulation of flame propagation on the surface of multilayer materials," Perm Journal of Petroleum and Mining Engineering, Vol. 12, No. 7, 138-152, 2013.

6. Poriazov, V. A., "The influence of aluminum particle dispersion on the burning rate of metallized solid propellants," Tomsk State University Journal of Mathematics and Mechanics, Vol. 33, No. 1, 96-104, 2015.
doi:10.17223/19988621/33/10

7. Li, L., A. V. Mostovshchikov, A. P. Ilyin, A. Smirnov, and F. A. Gubarev, "Optical system with brightness amplification for monitoring the combustion of aluminum-based nanopowders," IEEE T. Instrum. Meas., Vol. 69, No. 2, 457-468, 2020.
doi:10.1109/TIM.2019.2903616

8. Li, L., A. V. Mostovshchikov, A. P. Ilyin, P. A. Antipov, D. V. Shiyanov, and F. A. Gubarev, "Imaging system with brightness amplification for a metal-nanopowder combustion study," J. Appl. Phys., Vol. 127, 194503, 2020.
doi:10.1063/1.5139508

9. Li, L., A. V. Mostovshchikov, A. P. Ilyin, P. A. Antipov, D. V. Shiyanov, and F. A. Gubarev, "In situ nanopowder combustion visualization using laser systems with brightness amplification," Proc. Combust. Inst., 2020 (In Press), (https://doi.org/10.1016/j.proci.2020.08.048).

10. Wang, H., D. J. Kline, and M. R. Zachariah, "In-operando high-speed microscopy and thermometry of reaction propagation and sintering in a nanocomposite," Nat. Commun., Vol. 10, No. 1, 3032, 2019.
doi:10.1038/s41467-019-10843-4

11. Sullivan, T., W. Chiou, R. Fiore, and M. R. Zachariah, "In situ microscopy of rapidly heated nano-Al and nano-Al/WO3 thermites," Appl. Phys. Lett., Vol. 97, 133104, 2010.
doi:10.1063/1.3490752

12. Egan, G. C., K. T. Sullivan, T. LaGrange, B. W. Reed, and M. R. Zachariah, "In situ imaging of ultra-fast loss of nanostructure in nanoparticle aggregates," J. Appl. Phys., Vol. 115, 084903, 2014.
doi:10.1063/1.4867116

13. Evtushenko, G. S. (Ed.), Methods and Instruments for Visual and Optical Diagnostics of Objects and Fast Processes, Nova Science Publishers, New York, 2018.

14. Petrash, G. G. (Ed.), Optical Systems with Brightness Amplifiers, Nauka, Moscow, 1991.

15. Little, C. E. and N. V. Sabotinov (Ed.), Pulsed Metal Vapor Lasers, Kluwer Academic Publishers, Dordrecht, 1996.
doi:10.1007/978-94-009-1669-2

16. Little, C. E., Metal Vapor Lasers: Physics, Engineering and Applications, John Willey & Sons Ltd., Chichester, 1999.

17. Gubarev, F. A., A. V. Mostovshchikov, M. S. Klenovskii, A. P. Il'in, and L. Li, "Copper bromide laser monitor for combustion processes visualization," 2016 Progress In Electromagnetic Research Symposium (PIERS), 2666-2670, Shanghai, China, Aug. 8-11, 2016.

18. Li, L., A. V. Mostovshchikov, A. P. Il'in, and F. A. Gubarev, "Monitoring of Aluminum nanopowder combustion ignited by laser radiation," Progress In Electromagnetics Research Letters, Vol. 75, 125-130, 2018.
doi:10.2528/PIERL18022102

19. Gubarev, F. A., S. Kim, L. Li, A. V. Mostovshchikov, and A. P. Il'in, "An optical system with brightness amplification for studying the surface of metal nanopowders during combustion," Instrum. Exp. Tech., Vol. 63, No. 3, 379-386, 2020.
doi:10.1134/S0020441220030173

20. Ilyin, A. P., O. B. Nazarenko, and D. V. Tikhonov, "Synthesis and characterization of metal carbides nanoparticles produced by electrical explosion of wires," J. Nanosci. Nanotechnol., Vol. 12, 8137-8142, 2012.
doi:10.1166/jnn.2012.4515

21. Rodriguez, R. D., S. Shchadenko, G. Murastov, A. Lipovka, M. Fatkullin, I. Petrov, T.-H. Tran, A. Khalelov, M. Saqib, N. E. Villa, V. Bogoslovskiy, Y. Wang, C.-G. Hu, A. Zinovyev, W. Sheng, J.-J. Chen, I. Amin, and E. Sheremet, "Ultra-robust flexible electronics by laser-driven polymer-nanomaterials integration," Adv. Funct. Mater., 2008818, 2021.
doi:10.1002/adfm.202008818