1. Anguera, J., A. Andujar, M. C. Huynh, et al. "Advances in antenna technology for wireless handheld devices," International Journal on Antennas and Propagation, Vol. 2013, 2013.
doi:10.1155/2013/838364 Google Scholar
2. Wong, K. L., Planar Antennas for Wireless Communications, Wiley Inter-Science, 2003.
3. Rumsey, V., Frequency Independent Antennas, Academic Press, 1966.
4. Chen, D. and C. Q. Cheng, "A novel compact Ultra-Wideband (UWB) wide slot antenna with via holes," Progress In Electromagnetics Research, Vol. 94, 343-349, 2009.
doi:10.2528/PIER09062306 Google Scholar
5. Haq, M. A. U., S. Koziel, and Q. S. Cheng, "Miniaturisation of wideband antennas by means of feed line topology alterations," IET Microwaves, Antennas & Propagation, Vol. 12, No. 13, 2128-2134, 2018.
doi:10.1049/iet-map.2018.5197 Google Scholar
6. Dong, Y., W. Hong, and L. Liu, "Performance analysis of a printed super-wideband antenna," Microwave and Optical Technology Letters, Vol. 51, No. 4, 949-956, 2009.
doi:10.1002/mop.24222 Google Scholar
7. Singhal, S. and A. K. Singh, "Elliptical monopole based super wideband fractal antenna," Microwave and Optical Technology Letters, Vol. 62, No. 3, 1324-1328, 2020.
doi:10.1002/mop.32143 Google Scholar
8. Trinh-van, S., G. Kwon, and K. C. Hwang, "Planar super-wideband loop antenna with asymmetric coplanar strip feed," Electronics Letters, Vol. 52, No. 2, 96-98, 2015.
doi:10.1049/el.2015.2548 Google Scholar
9. Omar, S. A., A. Iqbal, O. A. Saraereh, et al. "An array of M-SHAPED vivaldi antennas for UWB applications," Progress In Electromagnetics Research Letters, Vol. 68, 67-72, 2017.
doi:10.2528/PIERL17041506 Google Scholar
10. Iqbal, A., O. A. Saraereh, and S. K. Jaiswal, "Maple leaf shaped UWB monopole antenna with dual band notch functionality," Progress In Electromagnetics Research C, Vol. 71, 169-175, 2017.
doi:10.2528/PIERC17010801 Google Scholar
11. Iqbal, A., A. Smida, N. K.Mallat, et al. "A compact UWB antenna with independently controllable notch bands," Sensors, Vol. 19, No. 6, 1411, 2019.
doi:10.3390/s19061411 Google Scholar
12. Palaniswami, S. K., M. Kanagasabai, and S. A. Kumar, "Super wideband printed monopole antenna for ultra wideband applications," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 133-141, 2017.
doi:10.1017/S1759078715000951 Google Scholar
13. Oskouei, H. D. and A. Mirtaheri, "A monopole super wideband microstrip antenna with band-notch rejection," 2017 Progress In Electromagnetics Research Symposium — Fall (PIERS — FALL), 2019-2024, Singapore, Singapore, Nov. 19–22, 2017. Google Scholar
14. Okan, T., "A compact octagonal-ring monopole antenna for super wideband applications," Microwave and Optical Technology Letters, Vol. 62, No. 3, 1237-1244, 2020.
doi:10.1002/mop.32117 Google Scholar
15. Singhal, S. and A. K. Singh, "CPW-fed hexagonal Sierpinski super wideband fractal antenna," IET Microwaves, Antennas & Propagation, Vol. 10, No. 15, 1701-1707, 2016.
doi:10.1049/iet-map.2016.0154 Google Scholar
16. Samsuzzaman, M. and M. T. Islam, "A semicircular shaped super wideband patch antenna with high bandwidth dimension ratio," Microwave and Optical Technology Letters, Vol. 57, No. 2, 445-452, 2015.
doi:10.1002/mop.28872 Google Scholar
17. Tahir, F. A. and A. H. Naqvi, "A compact hut-shaped printed antenna for super-wideband applications," Microwave and Optical Technology Letters, Vol. 57, No. 11, 2645-2649, 2015.
doi:10.1002/mop.29413 Google Scholar
18. Sharma, M., "Superwideband triple notch monopole antenna for multiple wireless applications," Wireless Personal Communications, Vol. 104, No. 1, 459-470, 2019.
doi:10.1007/s11277-018-6030-9 Google Scholar
19. Rahman, M. N., M. T. Islam, M. Z. Mahmud, et al. "Compact microstrip patch antenna proclaiming super wideband characteristics," Microwave and Optical Technology Letters, Vol. 59, No. 10, 2563-2570, 2017.
doi:10.1002/mop.30770 Google Scholar
20. Aziz, S. Z. and M. F. Jamlos, "Compact super wideband patch antenna design using diversities of reactive loaded technique," Microwave and Optical Technology Letters, Vol. 58, No. 12, 2811-2814, 2016.
doi:10.1002/mop.30152 Google Scholar
21. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Printed monopole antenna with tapered feed line, feed region and patch for super wideband applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 1, 39-45, 2014.
doi:10.1049/iet-map.2013.0094 Google Scholar
22. Risco, S., J. Anguera, A. Andujar, et al. "Coupled monopole antenna design for multiband handset devices," Microwave and Optical Technology Letters, Vol. 52, No. 2, 359-364, 2010.
doi:10.1002/mop.24893 Google Scholar
23. Chu, Q. X. and Y. Y. Yang, "A compact ultrawideband antenna with 3.4/5.5GHz dual band-notched characteristics," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 12, 3637-3644, 2008.
doi:10.1109/TAP.2008.2007368 Google Scholar
24. Zhu, X., Y. Li, S. Yong, et al. "A novel definition and measurement method of group delay and its application," IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 1, 229-233, 2008. Google Scholar
25. Mussina, R., D. R. Selviah, F. A. Fernandez, et al. "A rapid accurate technique to calculate the group delay, dispersion and dispersion slope of arbitrary radial refractive index profile weakly-guiding optical fibers," Progress In Electromagnetics Research, Vol. 145, 93-113, 2014.
doi:10.2528/PIER13031203 Google Scholar
26. Quintero, G., J. F. Zurcher, and A. K. Skrivervik, "System fidelity factor: A new method for comparing UWB antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2502-2212, 2011.
doi:10.1109/TAP.2011.2152322 Google Scholar