Search Results(13743)

2017-11-13
PIER M
Vol. 62, 111-122
Unobservable Potentials to Explain a Quantum Eraser and a Delayed-Choice Experiment
Masahito Morimoto
We present a new explanation for a quantum eraser. Mathematical description of the traditional explanation needs quantum-superposition states. However, the phenomenon can be explained without quantum-superposition states by introducing unobservable potentials which can be identified as an indefinite metric vector. In addition, a delayed choice experiment can also be explained by the interference between the photons and unobservable potentials, which seems like an unreal long-range correlation beyond the causality.
2017-11-11
PIER M
Vol. 62, 99-109
Transmission Line Model Considering Nonuniform Temperature Distribution at Different Locations
Yanling Wang , Yang Mo , Likai Liang , Wei Wang , Xiaofeng Zhou and Ran Wei
The temperature variation throughout overhead transmission lines has an important effect on the line operation. In order to describe the actual operation of transmission lines more accurately, this paper proposes a line segmentation method based on temperature distribution at different locations. Taking the actual transmission line of Shaanxi Province as a test case, the influence of the different temperature calculation methods on the maximum transmission power of lines is studied under the lumped parameter model and the distributed parameter model, respectively. It is shown that transmission line model considering non-uniform temperature distribution at different locations is more accurate for studying the operating state of the system.
2017-11-11
PIER M
Vol. 62, 89-98
Mm-Wave Dielectric Parameters of Magnesium Fluoride Glass Wafers
Vladimir Borisovich Yurchenko , Mehmet Ciydem , Marcin Lukasz Gradziel and Lidiya Valeriyevna Yurchenko
We measured millimeter-wave dielectric parameters of magnesium fluoride glass wafers at the room temperature in the frequency band of 75--110 GHz by applying the open resonator technique based on the use of Bragg structures and related multi-layer assemblies. Through the comparison of measured and simulated transmission spectra of various structures, the dielectric constant of magnesium fluoride glass is found as ε= 5.50±0.01. The estimate for the loss tangent is found to be tanδ= 0.00005, with a possibility that the actual losses could be smaller than this value.
2017-11-10
PIER Letters
Vol. 71, 103-108
A Novel and Compact UWB Bandpass Filter-Crossover Using Microstrip to CPS Transitions
Mohamed Lamine Seddiki , Mourad Nedil and Farid Ghanem
In this letter, a new compact UWB uniplanar crossover with bandpass filter characteristics is proposed and implemented. The UWB Filter-Crossover is composed of two novel UWB filters placed on the top and bottom of the substrate to obtain the crossover features. These proposed filters are based on microstrip to coplanar stripline (CPS) transitions and sections of CPS section line used as a multiple mode resonator (MMR). The simulated and measured results show a good result in terms of isolation, return loss and insertion loss in the entire UWB band.
2017-11-09
PIER M
Vol. 62, 79-88
A Compact CPW Fed UWB Antenna with Quad Band Notch Characteristics for ISM Band Applications
Raed Abdulkareem Abdulhasan , Rozlan Alias and Khairun Nidzam Ramli
A quad band-notched compact ultra-wideband (UWB) patch antenna to operate on the industry, scientific, and medical (ISM) bands are presented in this study. A modified hexagonal patch vertex-fed with a coplanar waveguide (CPW) is fabricated on an FR-4 substrate with size of 43 × 28 × 1.6 mm3 and fractional bandwidth of 133%. The compact antenna operates at a frequency of 2.45 GHz, which is often required for the efficient performance of ISM utilisation. The existing bands share the same bandwidth as that of UWB systems. Therefore, a notched band at 3 GHz for worldwide interoperability for microwave access (WiMAX), and a further resonance band at 2.45 GHz for ISM are generated by implementing a meander-line strip on the antenna. Furthermore, the design demonstrates a couple of F-shaped slots and an inverted diamond-shaped slot on the patch. Moreover, a pair of J-shaped slots is loaded on the ground plane. The downlink C-band, wireless local area network (WLAN), and downlink X-band are rejected by the proposed slots, respectively. The current distribution, gain, radiation efficiency, and quad notched parameters of the proposed antenna are studied by using CST software. The demonstrated prototype covers an ISM band at (2.2 GHz-2.6 GHz) with a return loss of -23.45 dB and omnidirectional radiation patterns. A good agreement is observed between measured and the simulated results. This paper has presented a solution for both interference and miniaturised issues.
2017-11-08
PIER M
Vol. 62, 65-77
A U-Shaped Meandered Slot Antenna for Biomedical Applications
Shikha Sukhija and Rakesh Kumar Sarin
In this paper, a U-shaped microstrip patch antenna with meandered slots is presented. It is designed for biomedical applications to operate at 2.45 GHz. Based on the simulation experience, two designs of the patch are introduced with and without use of meandered slots. The comparative study between these two is also demonstrated. It is observed that the antenna with meandered slots shows good performance with sufficient bandwidth, low losses and is capable of use in biomedical applications. Furthermore, the proposed antenna has small size of 35*29*1.6 mm3, and the size of the ground is only 14% of the overall antenna size. The measured and simulated results show good agreement with each other. The antenna is fabricated on an FR4 substrate, and simulation is carried out on FDTD based Empire XCcel simulator.
2017-11-08
PIER M
Vol. 62, 51-63
Utilization of Low Computational Cost Two Dimensional Analytical Equations in Optimization of Multi Rings Permanent Magnet Thrust Bearings
Siddappa Iranna Bekinal , Mrityunjay Doddamani and Nikhil D. Dravid
Replacement of conventional bearings by passive magnetic bearings for highspeed applications, in terms of their performance will be effective, if the design is carried out by optimizing the geometrical dimensions in the given control volume. Present work deals with modification and utilization of two-dimensional (2D) analytical equations in optimization of multi rings permanent magnet (PM) thrust bearing configurations. Conventional and rotational magnetized direction (RMD) configurations are selected in optimizing the design variables for maximum bearing characteristics in a given volume with a constant aspect ratio. The design variables chosen for optimization are axial offset of rotor, number of rings, radial air thickness and inner diameter of the rotor and stator PM rings. MATLAB codes for solving 2D equations are developed in optimizing configuration variables. Further, optimized parameter values of the two configurations are compared. Finally, optimized results obtained using 2D and three-dimensional (3D) equations for the conventional configuration with same aspect ratio are compared, and conclusions are presented.
2017-11-07
PIER M
Vol. 62, 41-50
Analysis and Validation of Super-Resolution Micro-Deformation Monitoring Radar
Zelong Shao , Xiangkun Zhang and Yingsong Li
A light micro-deformation monitoring radar based on frequency modulation continuous wave (FMCW) technique is proposed and designed for scenes which are sensitive to micro deformation such as slopes, dams, and high buildings. The mini radar is well suited to measure micro-deformation of buildings or mountains. Meanwhile, interferometric method was used by the radar to obtain high range resolution of the micro-deformation monitoring radar. The radar acquires micro deformation of the target by inversion of phase difference between the transmitted and received waves. To get an accurate micro-deformation measure result, the radar was carefully designed in signal mode and hardware structure. Various experiments are used in the article to verify the radar's deformation measure ability. The experiments prove that the radar can measure micro deformation accurately and timely. For example, railway bridges' vibration can be monitored by the radar in real time. In addition, it can be used in structures monitoring, disaster alarming and other regions.
2017-11-06
PIER C
Vol. 79, 149-157
A Miniaturized Self-Matched Negative Group Delay Microwave Circuit
Te Shao , Zhongbao Wang , Shao-Jun Fang , Hongmei Liu and Shiqiang Fu
A miniaturized self-matched negative group delay (NGD) microwave circuit without the need for external matching networks is proposed. The NGD circuit is based on a modified parallel-type RLC resonator, in which lumped elements (capacitors and inductors) are implemented by microstrip gaps and high-impedance and short-circuited microstrip lines. To verify the design concept, an NGD circuit with the size of 0.21λg×0.29λg is designed and fabricated. From the measurement results, the NGD time of -5.9 ns at the center frequency of 1.532 GHz is obtained with insertion loss of less than 12.5 dB, return losses of more than 25 dB and the NGD bandwidth of 45 MHz.
2017-11-06
PIER M
Vol. 62, 29-40
Analysis of the Influence of Asymmetric Grid on Synchronous Hydro Generator
Hongbo Qiu , Xiaobin Fan , Jianqin Feng and Cunxiang Yang
In order to analyze the influence of three-phase asymmetrical operation of a generator on its stable operation, firstly, taking a 24-MW bulb turbine generator as an example, the 2-D transient electromagnetic field model is established. Through the comparison analysis of the experimental results and simulation data, the correctness of the model is verified. Secondly, the values of air gap flux density, torque and loss in different conditions are obtained by using the finite element method. The effects of asymmetric three-phase current on air gap flux density, torque and loss are determined. Thirdly, the corresponding relationships between the three-phase current unbalance degree and torque ripple, eddy current loss are established, and the variations of torque ripple and eddy current loss are given when the three-phase current unbalance degree is changed. The result shows that the asymmetry three-phase current makes the torque ripple and eddy current loss increase dramatically, which seriously threaten the safe and stable operation of the generator. Finally, the further study on the torque ripple and eddy current loss of the generator under different current distributions and the same three-phase unbalance degree identifies that the content of negative sequence current is a key factor to affect the torque ripple and eddy current loss.
2017-11-05
PIER C
Vol. 79, 139-148
A Semi-Elliptical Wideband Directional Coupler
Yew-Chiong Lo , Boon-Kuan Chung and Eng Hock Lim
A new design of wideband directional couplers using a semi-elliptical edge-coupled structure is presented. This structure consists of two semi-elliptical patches on the top layer and an elliptical defected ground plane on the bottom layer to increase the coupling coefficient and operating bandwidth. Even and odd mode analysis is performed, and sets of design graphs are formulated to facilitate the design of the coupler on substrate with dielectric constants of 2.2 and 3.38. The operating frequency and coupling are controlled by the dimensions of the elliptical patch and the size of the air gap. Compared to the conventional parallel-microstrip coupler which requires extremely narrow air gap to achieve tighter coupling factor, the semi-elliptical coupler allows for wider air gap to be used, and it reduces fabrication difficulty. Both simulation and measurement results show that the proposed design exhibits wideband characteristic with a bandwidth ratio of more than 2.4 with acoupling deviation of ±1 dB.
2017-11-05
PIER C
Vol. 79, 127-137
Efficient Range Alignment Algorithm for Real-Time Range-Doppler Algorithm
Joo-Ho Jung , Si-Ho Kim , Ji-Hoon Bae , Kyung-Tae Kim and Sang-Hong Park
When deriving a range-Doppler image or a time-frequency image of a fast-maneuvering target at long range, existing range alignment methods yield poor results due to the large numbers of range profiles (RPs) and range bins that are required for this task. This paper proposes a three-step range alignment method to overcome the problems of these existing methods and to yield focused images: (1) coarse alignment using the interpolated center of mass of each RP, (2) fine alignment with an integer step using an entropy cost function, and (3) fine-tuning using particle swarm optimization. Compared to existing methods, the proposed method is computationally more efficient and provides better image focus.
2017-11-05
PIER C
Vol. 79, 115-126
High Gain Slotted Waveguide Antenna Based on Beam Focusing Using Electrically Split Ring Resonator Metasurface Employing Negative Refractive Index Medium
Adel A. A. Abdelrehim and Hooshang Ghafouri-Shiraz
In this paper, a new high performance slotted waveguide antenna incorporated with negative refractive index metamaterial structure is proposed, designed and experimentally demonstrated. The metamaterial structure is constructed from a multilayer two-directional structure of electrically split ring resonator which exhibits negative refractive index in direction of the radiated wave propagation when it is placed in front of the slotted waveguide antenna. As a result, the radiation beams of the slotted waveguide antenna are focused in both E and H planes, and hence the directivity and the gain are improved, while the beam area is reduced. The proposed antenna and the metamaterial structure operating at 10 GHz are designed, optimized and numerically simulated by using CST software. The effective parameters of the eSRR structure are extracted by Nicolson Ross Weir (NRW) algorithm from the s-parameters. For experimental verification, a proposed antenna operating at 10 GHz is fabricated using both wet etching microwave integrated circuit technique (for the metamaterial structure) and milling technique (for the slotted waveguide antenna). The measurements are carried out in an anechoic chamber. The measured results show that the E plane gain of the proposed slotted waveguide antenna is improved from 6.5 dB to 11 dB as compared to a conventional slotted waveguide antenna. Also, the E plane beamwidth is reduced from 94.1 degrees to about 50 degrees. The antenna return loss and bandwidth are slightly changed. Furthermore, the proposed antenna offers easier fabrication processes with a high gain than the horn antenna, particularly if the proposed antenna is scaled down in dimensionality to work in the THz regime.
2017-11-05
PIER M
Vol. 61, 215-229
Design of Efficient Air Core Inductors Using a Partial Element Equivalent Circuit Method
Nikolay Tal , Lisa Shatz , Yahav Morag and Yoash Levron
This paper proposes an optimization method to improve the efficiency of air core inductors, which are frequently employed in near field communication, wireless power transfer, and power conversion systems. We propose a modification to the PEEC based method, which aims at further reducing the computational complexity associated with complex 3D topologies. The main idea is to optimize 3D structures based on a 2D analysis. The device low frequency behavior is estimated based on the full 3D topology, while corrections resulting from high frequency effects are estimated based on a 2D approximation. As a result, since 2D formulations are used to estimate the high frequency effects, it is possible to obtain small mesh sizes, and hence to decrease the computational load, enabling a fast iterative design process. In addition, the proposed method requires no special commercial software, and can be easily implemented in Matlab. Results are compared to a standard commercial FEM tool, CST EM studio, and the results match well.
2017-11-04
PIER M
Vol. 62, 19-28
Continuous Beam Scanning in Substrate Integrated Waveguide Leaky Wave Antenna
Rahul Agrawal , Pravesh Belwal , Mahakar Singh and Suresh Chandra Gupta
A planar substrate integrated waveguide leaky wave antenna with cross slots is proposed in the frequency range of 10 GHz-15.5 GHz. Moreover, the symmetrical version of the structure is designed and analyzed in terms of the simulated S parameters and E field distribution which shows the existence of the open stopband in the frequency range (12.91 GHz-14 GHz), consequently degrading the radiation beam at broadside. Therefore, asymmetry is introduced in the unit cell design with respect to the position of the cross slots to achieve the continuous beam scanning in the desired frequency range. Unit cell is analyzed with the help of dispersion relation and Bloch impedance for predicting the beam scanning and matching of the proposed LWA respectively. This leaky TL is fabricated by the standard printed-circuit board process. Measured results are almost consistent with the simulation ones with a continuous beam scanning from of -40° to 16° with gain varying from 8.5 dBi to 11 dBi.
2017-11-02
PIER Letters
Vol. 71, 97-102
A Dual-Band Slotted Square Ring Patch Antenna for Local Hyperthermia Applications
Hemn Younesiraad , Mohammad Bemani and Saeid Nikmehr
In this paper, a simple dual-band compact slotted square ring patch antenna has been used as hyperthermia applicators in the treatment of cancerous human cells at superficial depths inside the body. The proposed antenna has the advantages of dual-band (f1=434 MHz and f2=915 MHz) operation and more compact size (124×124 mm2) than the current state-of-the-art designs without significant frequency detuning or impedance mismatch which makes it a more suitable choice for local hyperthermia. The proposed antenna provides a suitable specific absorption rate (SAR) penetration profile and shows a good resonance at two designed frequencies. We have optimized the structure so that the SAR level performed by the structure is sufficiently enough so as to meet the IEEE standard requirements for medical applications including hyperthermia. We have simulated and measured the structure with a low-profile substrate (i.e., FR4 substrate with εr=4.4 and thickness of 1.6 mm). During the design process, the simplified planar tri-layered tissue model interfaced with a water bolus is used to incorporate the main electrical effects on the antenna. The results validate the proposed antenna design.
2017-11-02
PIER M
Vol. 62, 11-18
Shuffling Two Quarter-Wavelength Slabs: One-Dimensional Numerical Simulation
Shin-Ku Lee and Mingtsu Ho
An innovative idea of shuffled structure of two quarter wavelength plates is proposed in this paper, which is supported by the numerical simulation results obtained through the application of the method of characteristics (MOC). In contrast to traditional anti-reflective coatings techniques, the proposed structure is a shuffled arrangement of two quarter wavelength slabs which are in theory evenly divided into N+1 and N pieces and then stacked up alternatively. These slabs are made of non-magnetic (μr = 1) dielectric (εr > 1) materials respectively characterized by dielectric constants εr1 and εr2 having the relation of εr2 =(εr1)2 to allow maximum transmission. These 2N+1 pieces are assembled such that there is always an εr2 piece between two εr1 pieces. Therefore, the proposed structure has the advantages of simple components and easy assembly. In the present simulation, the integer number N ranges from one to ten. The computational results are demonstrated in both time and frequency domains exhibiting that the proposed structure functions as a frequency selector.
2017-11-02
PIER M
Vol. 62, 1-9
New Features of the ``Double-Humped Effect'' in the Magnetized Plasma
George Jandieri , Akira Ishimaru and Oleg Kharshiladze
Statistical moments of a scattered field are calculated in the first and second approximations using modified smooth perturbation method. Analytical expressions of both the variance and correlation function are obtained in the principle plane containing wave vector of an incident wave and external magnetic field. Observation points are spaced apart at small distances taking into account diffraction effects. Numerical calculations are carried out for the anisotropic Gaussian spectral function containing both anisotropic factor and the angle of inclination of elongated anisotropic plasma irregularities using the experimental data. It was shown that 3D surface of the correlation function of the phase fluctuation oscillate and these variations are decreased increasing characteristic spatial scale of plasma irregularities. New peculiarities of the ``Double-humped Effect'' are revealed in the collisionless magnetized plasma. It was shown that spatial scale and the inclination angle of elongated anisotropic plasma irregularities play important role in formation of a gap in the spatial power spectrum. Varying the magneto-ionospheric plasma parameters and values of characteristic spatial scales of anisotropic irregularities the depth of a dip increases and oscillates.
2017-11-02
PIER M
Vol. 61, 205-213
Improved Performance of Double-T Monopole Antenna for 2.4/5.6 GHz Dual-Band WLAN Operation Using Artificial Magnetic Conductors
Zahra Chamani and Sajad Jahanbakht
A novel artificial magnetic conductor (AMC) structure for realizing gain enhancement of a double-T monopole antenna for 2.4/5.6 GHz dual-band WLAN operation is presented. First, an initial AMC unit cell is proposed, and a 2x5 array of this unit cell is placed behind a double-T monopole antenna as a ground plane, then the AMC structure is modified and improved to achieve better performance. Briefly, more than 4 dB gain improvement and other desirable characteristics including suitable radiation patterns and adequate bandwidths are reported from the simulation results of the final designed structure, and the simulation is performed by CST MWS 2014 in any of the mentioned frequencies. Finally, the validity and applicability of this design are demonstrated through experimental results of the fabricated antenna.
2017-11-02
PIER M
Vol. 61, 197-204
A Wideband Collocated Antennas with Five Reconfigurable Patterns and Low Mutual Coupling
Lila Mouffok and Farid Ghanem
Wideband collocated antennas for multiple input multiple output (MIMO) systems are proposed. The structure is disposed on two substrate layers. On the first top substrate, a disc monopole is etched. The top of the second substrate contains a tapered slot antenna in a form of a Vivaldi antenna and two reflector elements in the form of half disc. The designed antenna can switch among five radiation patterns which radiate in different directions of space with only two excitation ports. All antennas have a relative bandwidth at least 23%. The antenna elements exhibit a low mutual coupling since they are around -17 dB over the considered bandwidths. This performance is believed because the disc monopole mainly has a broadside radiation while the Vivaldi antenna radiates in end-fire directions. With an overall length of about a half guided wavelength, the proposed structure is believed suitable for applications needing radiation pattern diversity.