Vol. 62
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-11-02
Shuffling Two Quarter-Wavelength Slabs: One-Dimensional Numerical Simulation
By
Progress In Electromagnetics Research M, Vol. 62, 11-18, 2017
Abstract
An innovative idea of shuffled structure of two quarter wavelength plates is proposed in this paper, which is supported by the numerical simulation results obtained through the application of the method of characteristics (MOC). In contrast to traditional anti-reflective coatings techniques, the proposed structure is a shuffled arrangement of two quarter wavelength slabs which are in theory evenly divided into N+1 and N pieces and then stacked up alternatively. These slabs are made of non-magnetic (μr = 1) dielectric (εr > 1) materials respectively characterized by dielectric constants εr1 and εr2 having the relation of εr2 =(εr1)2 to allow maximum transmission. These 2N+1 pieces are assembled such that there is always an εr2 piece between two εr1 pieces. Therefore, the proposed structure has the advantages of simple components and easy assembly. In the present simulation, the integer number N ranges from one to ten. The computational results are demonstrated in both time and frequency domains exhibiting that the proposed structure functions as a frequency selector.
Citation
Shin-Ku Lee Mingtsu Ho , "Shuffling Two Quarter-Wavelength Slabs: One-Dimensional Numerical Simulation," Progress In Electromagnetics Research M, Vol. 62, 11-18, 2017.
doi:10.2528/PIERM17072005
http://www.jpier.org/PIERM/pier.php?paper=17072005
References

1. Rosencrantz, T., H. Bulow-Hube, B. Karlsson, and A. Roos, "Increased solar energy and daylight utilization using anti-reflective coating in energy-efficient windows," Sol. Energy Mater. Sol. Cells, Vol. 89, 249-260, 2005.
doi:10.1016/j.solmat.2004.12.007

2. Raut, H. K., V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, "Anti-reflective coatings: A critical, in-depth review," Energy & Environmental Science, Vol. 4, 3779-3804, 2011.
doi:10.1039/c1ee01297e

3. Hill, K. O., Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: Application to reflection fiber fabrication," Appl. Phys. Lett., Vol. 32, No. 10, 647, 1978.
doi:10.1063/1.89881

4. MacLeod, H. A., Thin Film Optical Filters, 3rd Ed., CRC, 2001.
doi:10.1201/9781420033236

5. Taflove, A., Computational Electrodynamics, The Finite-Difference Time-Domain Method, Artech House, Boston, 1995.

6. Donohoe, J. P., J. H. Beggs, and M. Ho, "Comparison of finite-difference time-domain results for scattered EM fields: Yee algorithm vs. a characteristic based algorithm," 27th IEEE Southeastern Symposium on System Theory, March 1995.

7. Ho, M., "Scattering of EM waves from traveling and/or vibrating perfect surface: Numerical simulation," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 152-156, January 2006.
doi:10.1109/TAP.2005.861552

8. Ho, M., "EM scattering from PEC plane moving at extremely high speed: simulation in one dimension," Journal of Applied Science and Engineering (JASE), Vol. 17, No. 4, 429-436, December 2014.

9. Ho, M. and F.-S. Lai, "Effects of medium conductivity on electromagnetic pulse propagation onto dielectric half space: One-dimensional simulation using characteristic-based method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1773-1785, 2007.

10. Ho, M., F.-S. Lai, S.-W. Tan, and P.-W. Chen, "Numerical simulation of propagation of EM pulse through lossless non-uniform dielectric slab using characteristic-based method," Progress In Electromagnetic Research, Vol. 81, 197-212, 2008.
doi:10.2528/PIER08010303

11. Ho, M., "Numerically solving scattered electromagnetic fields from rotating objects using passing center swing back grid technique: A proposal," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 23, 389-394, January 2009.
doi:10.1163/156939309787604526

12. Ho, M., "Simulation of scattered fields from rotating cylinder in 2D: Under illumination of TE and TM gaussian pulses," PIERS Proceedings, Moscow, Russia, August 18-21, 2009.

13. Ho, M., "Simulation of scattered EM fields from rotating cylinder using passing center swing back grids technique in two dimensions," Progress In Electromagnetic Research, Vol. 92, 79-90, 2009.
doi:10.2528/PIER09030302

14. Ho, M., L.-A. Tsai, and C.-J. Tsai, "EM fields inside a rotating circular hollow dielectric cylinder: Numerical simulation in 2Ds," Progress In Electromagnetics Research M, Vol. 45, 1-8, 2016.
doi:10.2528/PIERM15102301

15. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.

16. Whitfield, D. L. and M. Janus, "Three-dimensional unsteady euler equations solution using flux vector splitting,", AIAA Paper No. 84-1552, June 1984.

17. Briley, W., S. Neerarambam, and D. Whitfield, "Implicit lower-upper/approximate-factorization algorithms for viscous incompressible flows," 12th Computational Fluid Dynamics Conference, Fluid Dynamics and Co-located Conferences, A95-36593, San Diego, CA, U.S.A., 1995.

18. Orfanidis, S. J., Electromagnetic Waves and Antennas, ECE Department, Rutgers University, New Jersey, U.S.A., 2016.

19. Krepelka, J., "Maximally flat antireflection coatings," Jemn´a Mechanika A Optika, Vol. 3-5, 53-56, 1992.

20. Chang, H.-T., M. Zürch, P. M. Kraus, L. J. Borja, D. M. Neumark, and S. R. Leone, "Simultaneous generation of sub-5-femtosecond 400 nm and 800 nm pulses for attosecond extreme ultraviolet pump - Probe spectroscopy," Optics Letters, Vol. 41, No. 22, 5365-5368, 2016.
doi:10.1364/OL.41.005365