1. Kim, H. J., J. Park, K. S. Oh, J. P. Choi, J. E. Jang, and J. W. Choi, "Near-field magnetic induction MIMO communication using heterogeneous multipole loop antenna array for higher data rate transmission," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1952-1962, 2016.
doi:10.1109/TAP.2016.2539371 Google Scholar
2. Bauernfeind, T., K. Preis, W. Renhart, O. Bíró, and M. Gebhart, "Finite element simulation of impedance measurement effects of NFC antennas," IEEE Trans. Magnetics, Vol. 51, No. 3, 2015.
doi:10.1109/TMAG.2014.2354982 Google Scholar
3. Hong, S., S. Lee, S. Jeong, D. H. Kim, J. Song, H. Kim, and J. Kim, "Dual-directional near field communication tag antenna with effective magnetic field isolation from wireless power transfer system," IEEE Wireless Power Transfer Conference (WPTC), 1-3, 2017. Google Scholar
4. Sharma, A., G. Singh, D. Bhatnagar, I. J. Garcia Zuazola, and A. Perallos, "Magnetic field forming using planar multicoil antenna to generate orthogonal H-field components," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 2906-2915, 2017.
doi:10.1109/TAP.2017.2695009 Google Scholar
5. Chung, Y. D., C. Y. Lee, D. W. Kim, H. Kang, Y. G. Park, and Y. S. Yoon, "Conceptual design and operating characteristics of multi-resonance antennas in the wireless power charging system for superconducting MAGLEV train," IEEE Transactions on Applied Superconductivity, Vol. 27, No. 4, 2017.
doi:10.1109/TASC.2017.2662233 Google Scholar
6. Yodogawa, S. and M. Morishita, "Wireless power transfer system using a Helmholtz coil for electromagnetic suspension carrier system," 19th International Conference on Electrical Machines and Systems (ICEMS), 1-4, 2016. Google Scholar
7. Tuethong, P., P. Yutthagowith, and S. Maneerot, "Design and construction of a variable air-core inductor for lightning impulse current test on surge arresters," 33rd Int. Conf. Lightning Protection (ICLP), 1-4, 2016. Google Scholar
8. Akagi, T., S. Abe, M. Hatanaka, and S. Matsumoto, "An isolated dc-dc converter using air-core inductor for power supply on chip applications," IEEE Int. Telecomm. Energy Conf. (INTELEC), 1-6, 2015. Google Scholar
9. Barrera-Cardenas, R., T. Isobe, and M. Molinas, "Optimal design of air-core inductor for medium/high power dc-dc converters," IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), 1-8, 2016. Google Scholar
10. Liang, W., L. Raymond, and J. Rivas, "3-D-printed air-core inductors for high-frequency power converters," IEEE Trans. Power Electron., Vol. 31, No. 1, 52-64, 2016.
doi:10.1109/TPEL.2015.2441005 Google Scholar
11. Naayagi, R. T. and A. J. Forsyth, "Design of high frequency air-core inductor for DAB converter," IEEE Int. Conf. Power Electron., Drives and Energy Systems (PEDES), 1-4, 2012. Google Scholar
12. Nour, Y., M. Orabi, and A. Lotfi, "High frequency QSW-ZVS integrated buck converter utilizing an air core inductor," IEEE Annual Applied Power Electron. Conf. (APEC), 1319-1323, 2012. Google Scholar
13. Meere, R., N. Wang, T. O’Donnell, S. Kulkarni, S. Roy, and S. Cian O’Mathuna, "Magnetic-core and air-core inductors on silicon: a performance comparison up to 100 MHz," IEEE Trans. Magnetics, Vol. 47, No. 10, 4429-4432, 2011.
doi:10.1109/TMAG.2011.2158519 Google Scholar
14. Dowell, P. L., "Effects of eddy currents in transformer windings," Proceedings of the Institution of Electrical Engineers, Vol. 113, No. 8, 1387-1394, 1966.
doi:10.1049/piee.1966.0236 Google Scholar
15. Perry, M. P., "Multiple layer series connected winding design for minimum losses," IEEE Trans. Power Apparatus Syst., Vol. 96/98, No. 1, 116-123, Jan./Feb. 1979.
doi:10.1109/TPAS.1979.319520 Google Scholar
16. Bennet, E. and S. C. Larson, "Effective resistance of alternating currents of multilayer windings," Trans. Amer. Inst. Elect. Eng., Vol. 59, 1010-1017, 1940.
doi:10.1109/T-AIEE.1940.5058083 Google Scholar
17. Vandelac, J. P. and P. D. Ziogas, "A novel approach for minimizing high frequency effects in high-frequency transformers copper losses," IEEE Trans. Power Electron., Vol. 3, No. 3, 266-276, Jul. 1988.
doi:10.1109/63.17944 Google Scholar
18. Ferreira, J. A., "Improved analytical modelling of conductive losses in magnetic components," IEEE Trans. Power Electron., Vol. 9, No. 1, 127-131, Jan. 1994.
doi:10.1109/63.285503 Google Scholar
19. Hurley, W. G., E. Gath, and J. G. Breslin, "Optimizing the A.C. resistance of multilayer transformer windings with arbitrary current waveforms," IEEE Trans. Power Electron., Vol. 15, No. 2, 369-376, Mar. 2000.
doi:10.1109/63.838110 Google Scholar
20. Hurley, W. G. and M. C. Duffy, "Calculation of self and mutual impedances in planar sandwich inductors," IEEE Trans. Magn., Vol. 33, No. 3, 2282-2290, May 1997.
doi:10.1109/20.573844 Google Scholar
21. Urling, A. M., et al. "Characterizing high frequency effects in a transformer windings - A guide to several significant articles," Proc. Appl. Power. Electron. Conf., 373-385, Mar. 1989. Google Scholar
22. Skutt, G. R. and P. S. Venkatraman, "Analysis and measurement of high frequency effects in high-current transformers - A comparison between analytical and numerical solutions," Appl. Power Electron. Conf., Los Angeles, CA, Mar. 1990. Google Scholar
23. Severns, R., "Additional losses in high-frequency magnetics due to non ideal field distributions," Proc. Appl. Power Electron. Conf., 333-338, Boston, MA, Feb. 1992. Google Scholar
24. Robert, F., P. Mathys, and J. P. Schauwers, "Ohmic losses calculation in SMPS transformers: Numerical study of Dowell’s approach accuracy," IEEE Trans. Magn., Vol. 34, No. 4, 1255-1257, Jul. 1998.
doi:10.1109/20.706513 Google Scholar
25. Robert, F., P. Mathys, B. Velaerts, and J. P. Schauwers, "Two-dimensional analysis of the edge effect field and losses in high-frequency transformer foils," IEEE Trans. Magn., Vol. 41, No. 8, 2377-2383, Aug. 2005.
doi:10.1109/TMAG.2005.852938 Google Scholar
26. Lotfi, A. W. and F. C. Lee, "Two dimensional field solutions for high frequency transformer windings," Proc. Virginia Power Electron. Conf., 1098-1104, 1993. Google Scholar
27. Zwysen, J., R. Gelagaev, J. Driesen, S. Goossens, K. Vanvlasselaer, W. Symens, and B. Schuyten, "Multi-objective design of a close-coupled inductor for a three-phase interleaved 140 kW dc-dc converter," 39th IECON, 1056-1061, Vienna, 2013. Google Scholar
28. Lotfi, A. W. and F. C. Lee, "Two-dimensional skin effect in power foils for high-frequency applications," IEEE Trans. Magn., Vol. 31, No. 2, 1003-1006, Mar. 1995.
doi:10.1109/20.364775 Google Scholar
29. Robert, F., P. Mathys, and J.-P. Schauwers, "A closed-form formula for 2-D ohmic losses calculation in SMPS transformer foils," IEEE Trans. Power Electron., Vol. 16, No. 3, 437-444, May 2001.
doi:10.1109/63.923777 Google Scholar
30. Hu, J. and Ch. R. Sullivan, "The quasi-distributed gap technique for planar inductors: Design guidelines," IEEE Ind. Appl. Conf., New Orleans, LA, 1997. Google Scholar
31. Boggetto, J. M., Y. Lembeye, J. P. Ferrieux, and J. P. Keradec, "Copper losses in power integrated inductors on silicon," Proc. 37th IAS Annu. Conf., 977-983, 2002. Google Scholar
32. Reatti, A. and M. K. Kazimierczuk, "Comparison of various methods for calculating the ac resistance of inductors," IEEE Trans. Magn., Vol. 38, No. 3, 1512-1518, May 2002.
doi:10.1109/20.999124 Google Scholar
33. Wang, N., T. O’Donnell, and C. O’Mathuna, "An improved calculation of copper losses in integrated power inductors on silicon," IEEE Trans. Power Electron., Vol. 28, No. 8, 3641-3647, 2013.
doi:10.1109/TPEL.2012.2227805 Google Scholar
34. Barr, A. W., "Calculation of frequency-dependent impedance for conductors of rectangular cross section," AMP J. Technology, Vol. 1, 91-100, 1991. Google Scholar
35. Zhang, R., J. White, and J. Kassakian, "Fast simulation of complicated 3-D structures above lossy magnetic media," IEEE Trans. Magn., Vol. 50, No. 10, 1-16, Oct. 2014.
doi:10.1109/TMAG.2014.2323933 Google Scholar
36. Rosskopf, A., E. Baer, C. Joffe, and C. Bonse, "Calculation of power losses in litz wire systems by coupling FEM and PEEC method," IEEE Trans. Power Electron., Vol. 31, No. 9, 6442-6449, 2016.
doi:10.1109/TPEL.2015.2499793 Google Scholar
37. Kovacevic-Badstubner, I., R. Burkart, C. Dittli, A. Musing, and J. W. Kolar, "Fast method for the calculation of power losses in foil windings," Proceedings of the 17th European Conference on Power Electronics and Applications (ECCE Europe 2015), Geneva, Switzerland, Sep. 8-10, 2015. Google Scholar
38. Davies, J. and P. Silvester, "Finite elements in electromagnetics: A jubilee review," Appl. Comput. Electromagn. Soc. J., Vol. 9, 10-24, 1994. Google Scholar
39. MAXWELL, 2D&3D Field Simulator, Ansys Corp. Google Scholar
40. CST EM STUDIO, 3D field simulator, CST Computer Simulation Technology GmbH. Google Scholar
41. Zienkiewicz, O. C. and R. L. Taylor, The Finite Element Method Set, 6th Ed., Butterworth-Heinemann, 2005.
42. Humphries, S., Jr., Field Solutions on Computers, CRC Press, 1997.
43. Lupi, S., F. Dughiero, E. Baake, and J. Lavers, "State of the art of numerical modeling for induction processes," COMPEL - The Int. J. Comput. Math. Electr. Electron. Eng., Vol. 27, No. 2, 335-349, 2008.
doi:10.1108/compel.2008.17427baa.001 Google Scholar
44. Ruehli, A. E., "Equivalent circuit models for three dimensional multiconductor systems," IEEE Trans. Microw. Theory Tech., Vol. 22, No. 3, 216-221, 1974.
doi:10.1109/TMTT.1974.1128204 Google Scholar
45. Tran, T.-S., G. Meunier, P. Labie, and J. Aime, "Comparison of FEM-PEEC coupled method and finite-element method," IEEE Trans. Magn., Vol. 46, No. 4, 996-999, Apr. 2010.
doi:10.1109/TMAG.2009.2037953 Google Scholar
46. Larsson, J., "Electromagnetics from a quasistatic perspective," Am. J. Phys., Vol. 75, 230-239, 2007.
doi:10.1119/1.2397095 Google Scholar
47. Strunsky, B. M., "Short electric network of electric furnaces," GN-TIL, Moscow, 1962. Google Scholar
48. Paul, C. R., Introduction to Electromagnetic Compatibility, John Wiley & Sons Inc, 2006.
49. Magnusson, P. C., "Geometric mean distances of angle-shaped conductors," Transactions of the American Institute of Electrical Engineers, Vol. 70, No. 1, 121-123, 1951.
doi:10.1109/T-AIEE.1951.5060377 Google Scholar
50. Rainal, A. J., "Computing inductive noise of chip packages," ATT Bell Lab. Tech. J., Vol. 63, No. 1, 177-195, Jan. 1984.
doi:10.1002/j.1538-7305.1984.tb00008.x Google Scholar