1. Balanis, C. A., Antenna Theory Analysis & Design, 3rd Ed., John Wiley and Sons, 2005.
2. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.
3. Mohamed-Hicho, N. M., E. Antonino-Daviu, M. Cabedo-Fabres, and M. Ferrando-Bataller, "A novel low-profile high-gain UHF antenna using high-impedance surfaces," IEEE Antennas and Wireless Propagation Lett., Vol. 14, 1014-1017, 2015.
doi:10.1109/LAWP.2015.2389274 Google Scholar
4. Wang, B., C. Huang, W. Luo, and W. Ruan, "Low-profile broadband dual-polarized dipole antenna on AMC reflector for base station," Progress In Electromagnetics Research C, Vol. 74, 171-179, 2017.
doi:10.2528/PIERC17032101 Google Scholar
5. Elwi, T. A., A. I. Imran, and Y. Alnaiemy, "A miniaturized lotus shaped microstrip antenna loaded with EBG structures for high gain-bandwidth product applications," Progress In Electromagnetics Research C, Vol. 60, 157-167, 2015.
doi:10.2528/PIERC15101804 Google Scholar
6. Muhammad, N., et al. "High gain FSS aperture coupled microstrip patch antenna," Progress In Electromagnetics Research C, Vol. 64, 21-31, 2016.
doi:10.2528/PIERC16022102 Google Scholar
7. Sievenpiper, D., L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001 Google Scholar
8. Rexhepi, T. and D. Crouse, "A study of composite substrates for VHF and UHF artificial magnetic conductors and their application to a SATCOM antenna," Progress In Electromagnetics Research C, Vol. 64, 1-9, 2016.
doi:10.2528/PIERC16030409 Google Scholar
9. LibiMol, V., et al. "Radar cross section reduction property of high impedance surface on a lossy dielectric," Progress In Electromagnetics Research M, Vol. 46, 19-28, 2016.
doi:10.2528/PIERM15101606 Google Scholar
10. Kuo, Y. and K. Wong, "Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, 2187-2192, 2003.
doi:10.1109/TAP.2003.816391 Google Scholar
11. Zhang, L. and T. Dong, "RCS reduction using a miniaturized uni-planar electromagnetic band gap structure for circularly polarized microstrip antenna array," Progress In Electromagnetics Research Letters, Vol. 66, 135-141, 2017.
doi:10.2528/PIERL17011504 Google Scholar
12. Meriche, M. A., H. Attia, A. Messai, and T. A. Denidni, "Gain improvement of a wideband monopole antenna with novel artificial magnetic conductor," 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-2, IEEE, 2016. Google Scholar
13. El Ghabzouri, M., A. E. Salhi, P. Anacleto, and P. Mendes, "Enhanced low profile, dual-band antenna via novel electromagnetic band gap structure," Progress In Electromagnetics Research C, Vol. 71, 79-89, 2017.
doi:10.2528/PIERC16110904 Google Scholar
14. Zheng, J. and S. Fang, "A new method for designing low RCS patch antenna using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 58, 125-131, 2016.
doi:10.2528/PIERL15122702 Google Scholar
15. Yang, W., H. Wang, W. Che, and J. Wang, "A wideband and high-gain edge-fed patch antenna and array using artificial magnetic conductor structures," IEEE Antennas and Wireless Propagation Lett., Vol. 12, 769-772, 2013.
doi:10.1109/LAWP.2013.2270943 Google Scholar
16. Majid, H. A., M. K. Abd Rahim, M. R. Hamid, M. F. M. Yusoff, N. A. Murad, N. A. Samsuri, O. B. Ayop, and R. Dewan, "Wideband antenna with reconfigurable band notched using EBG structure," Progress In Electromagnetics Research Letters, Vol. 54, 7-13, 2015.
doi:10.2528/PIERL15032404 Google Scholar
17. Ta, S. X. and I. Park, "Design of miniaturized dual-band artificial magnetic conductor with easy control of second/first resonant frequency ratio," Journal of Electromagnetic Engineering and Science, Vol. 13, No. 2, 104-112, Jun. 2013.
doi:10.5515/JKIEES.2013.13.2.104 Google Scholar
18. Li, H., Q. Cao, and Y. Wang, "A novel miniaturized frequency selective surface with very stable performance," Progress In Electromagnetics Research C, Vol. 75, 131-138, 2017.
doi:10.2528/PIERC17051603 Google Scholar
19. Jaglan, N., B. K. Kanaujia, S. D. Gupta, and S. Srivastava, "Triple band notched UWB antenna design using electromagnetic band gap structures," Progress In Electromagnetics Research C, Vol. 66, 139-147, 2016.
doi:10.2528/PIERC16052304 Google Scholar