Vol. 62
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-11-11
Mm -Wave Dielectric Parameters of Magnesium Fluoride Glass Wafers
By
Progress In Electromagnetics Research M, Vol. 62, 89-98, 2017
Abstract
We measured millimeter-wave dielectric parameters of magnesium fluoride glass wafers at the room temperature in the frequency band of 75--110 GHz by applying the open resonator technique based on the use of Bragg structures and related multi-layer assemblies. Through the comparison of measured and simulated transmission spectra of various structures, the dielectric constant of magnesium fluoride glass is found as ε= 5.50±0.01. The estimate for the loss tangent is found to be tanδ= 0.00005, with a possibility that the actual losses could be smaller than this value.
Citation
Vladimir Borisovich Yurchenko Mehmet Ciydem Marcin Lukasz Gradziel Lidiya Valeriyevna Yurchenko , "Mm -Wave Dielectric Parameters of Magnesium Fluoride Glass Wafers," Progress In Electromagnetics Research M, Vol. 62, 89-98, 2017.
doi:10.2528/PIERM17081805
http://www.jpier.org/PIERM/pier.php?paper=17081805
References

1. Lin, G., S. Diallo, R. Henriet, M. Jacquot, and Y. K. Chembo, "Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor," Opt. Lett., Vol. 20, 6009-6012, 2014.
doi:10.1364/OL.39.006009

2. Tavernier, H., P. Salzenstein, K. Volyanskiy, Y. K. Chembo, and L. Larger, "Magnesium fluoride whispering gallery mode disk-resonators for microwave photonics applications," IEEE Photonics Technol. Lett., Vol. 22, 1629-1631, 2010.

3. Yurchenko, L. and V. Yurchenko, "Self-generation of ultra-short pulses in a cavity with a dielectric mirror excited by an array of active THz devices," 8th Intl. Conf. on Terahertz Electronics, 49-52, Darmstadt, Germany, Sept. 28-29, 2000.

4. Yurchenko, L. V. and V. B. Yurchenko, "Analysis of the dynamical chaos in a cavity with an array of active devices," 12th Intl. Conf. on Microwaves and Radar. MIKON-98. Conf. Proc. (IEEE Cat. No.98EX195), Vol. 3, 723-727, Krakow, May 20-22, 1998.
doi:10.1109/MIKON.1998.742813

5. Geyer, R. G., J. Baker-Jarvis, and J. Krupka, "Variable-temperature microwave dielectric properties of singlecrystal fluorides," Developments in Dielectric Materials and Electronic Devices, Vol. 167, 51-55, Eds. K. M. Nair, R. Guo, A. S. Bhalla, S. I. Hirano, D. Suvorov; Proc. 106th Annual Meeting of the Am. Ceramic Soc., 2004.

6. Jacob, M. V., J. Mazierska, and J. Krupka, "Low temperature complex permittivity of MgF2 at microwave frequencies from TE01δ modes," APMC-2005 Asia-Pacific Microwave Conf. Proc., Vol. 5, paper 5, Suzhou, China, Dec. 4-7, 2005.

7. Clarke, R. N., A. P. Gregory, D. Cannell, M. Patrick, S. Wylie, I. Youngs, and G. Hill, A Guide to the Characterisation of Dielectric Materials at RF and Microwave Frequencies, NPL, Teddington, 2003.

8. Baker-Jarvis, J., M. D. Janezic, B. F. Riddle, R. T. Johnk, P. Kabos, C. L. Holloway, R. G. Geyer, and C. A. Grosvenor, Measuring the Permittivity and Permiability of Lossy Materials: Solids, Liquids, Metals, Building Materials, and Negative-Index Materials, NIST, Boulder, CO, 2005.

9. Krupnov, A. F., V. N. Markov, G. Y. Golubyatnikov, I. I. Leonov, Y. N. Konoplev, and V. V. Parshin, "Ultra-low absorption measurement in dielectrics in millimeter- and submillimeter-wave range," IEEE Trans. Microw. Theory Tech., Vol. 47, 284-289, 1999.
doi:10.1109/22.750225

10. Krupka, J., "Frequency domain complex permittivity measurements at microwave frequencies," Meas. Sci. Technol., Vol. 17, R55-R70, 2006.
doi:10.1088/0957-0233/17/6/R01

11. Egorov, V. N., "Resonance methods for microwave studies of dielectrics (review)," Instrum. Exp. Tech., Vol. 50, 143-175, 2007.
doi:10.1134/S0020441207020017

12. Yurchenko, V. B., "High-Q reflection notch method for mm-wave measurements of large dielectric losses using a stack resonator: Analysis and simulations," Progress In Electromagnetics Research M, Vol. 24, 265-279, 2012.
doi:10.2528/PIERM12042902

13. Yurchenko, V. B., M. Ciydem, M. Gradziel, J. A. Murphy, and A. Altintas, "Double-sided split-step mm-wave Fresnel lenses: Fabrication and focal field measurements," J. Europ. Opt. Soc. Rap. Public, Vol. 9, 14007-5, 2014.
doi:10.2971/jeos.2014.14007

14. Murphy, J. A., et al., "Multi-mode horn design and beam characteristics for the Planck satellite," J. Inst., Vol. 5, No. 4, T04001-24, 2010.

15. Yurchenko, V., M. Ciydem, M. Gradziel, A. Murphy, and A. Altintas, "Light-controlled photonics-based mm-wave beam switch," Optics Express, Vol. 24, 16471-16478, 2016.
doi:10.1364/OE.24.016471

16. Born, M. and E.Wolf, Principles of Optics, 7th Ed., Cambridge University Press, Cambridge, 2003.

17. Guo, H., J. Chen, and S. Zhuang, "Vector plane wave spectrum of an arbitrary polarized electromagnetic wave," Optics Express, Vol. 14, 2095-2100, 2006.
doi:10.1364/OE.14.002095

18. Zhou, G., X. Chu, and J. Zheng, "Analytical structure of an apertured vector Gaussian beam in the far field," Optics Commun., Vol. 281, 1929-1934, 2008.
doi:10.1016/j.optcom.2007.11.072