Search Results(13734)

2022-10-06
PIER B
Vol. 96, 197-212
A Linear-Complexity Layer-Coupling Algorithm for 1D- and 2D-Periodic Scattering in Multilayered Media
Loes Frederique Van Rijswijk , Frank Jaco Buijnsters and Martijn Constant van Beurden
The formulation of a matrix-vector product with linear complexity for layer-coupling is discussed in the context of scattering by periodic dielectric scatterers embedded in a layered medium and formulated as a spectral-domain volume integral. It is shown how a traditional formulation in terms of reflection and transmission coefficients can be modified to arrive at an algorithm of linear complexity if used as a matrix-vector product. The computational performance scheme is demonstrated for stacks in which scattering objects are distributed over hundreds of layers.
2022-10-06
PIER C
Vol. 125, 93-104
A Nested Slot and T-Match Network Based Hybrid Antenna for UHF RFID Tag Applications
Amit Kumar Singh , Sudhir Bhaskar and Amit Kumar Singh
A planar UHF RFID tag antenna with a hybrid nested slot and T-match network is presented. A novel T-match network in a nested slot is introduced to have superior conjugate impedance matching between tag antenna and the semiconductor microchip. Size curtailment is acquired by means of exploiting the T-match network branches and the feeder strip line. Moreover, expanding the nested slot area and increasing the T-match branch length modify the electrical length and increase the antenna inductance. Thus by utilizing the arm of matching network and feeder, conjugate impedance is achieved in accordance with the semiconductor chip at 865 MHz. A surpassing UHF tag with volume 120×60×1.6 mm3 (0.346λ×0.173λ×0.0046λ), with outstanding 10-dB return loss of 12 MHz has been flourishingly demonstrated, and it is able to obtain a detection range of 13.9 m. This tag antenna composition is simulated with respect to 4 W EIRP reader.
2022-10-06
PIER C
Vol. 125, 83-92
A Novel UWB Antenna with Dual Band Notched Characteristics Using a Single Parasitic
Grandhi Venkata Subrahmanyam and Sri Rama Krishna Kalva
A novel ultrawideband (UWB) antenna with a single parasitic U-type element is reported to exhibit dual-band notch peculiarities. A slotted radiator and a novel defected ground structure (DGS) comprise the proposed antenna, which has a bandwidth of 2.9-11.75 GHz (121%) in the UWB spectrum. By etching a single inverted U-shaped parasitic element on top of the DGS, two rejected bands at the downlink of X-band (6.8-8 GHz) and the uplink of X-band (9.7-11.3 GHz) applications are achieved. The proposed antenna is printed on an FR-4 substrate with a compact size of 24×28 mm2, has a gain fluctuation of 1.4-5.7 dBi, and a peak radiation efficiency of 92.3%. The suggested antenna is a viable candidate for downlink and uplink X-band notched UWB applications owing to the excellent agreement between its measured and simulated results.
2022-10-04
PIER C
Vol. 125, 67-82
Design, Analysis, and Modeling Using WCIP Method of Novel Microstrip Patch Antenna for THz Applications
Anouar Mondir , Larbi Setti and Rida El Haffar
This paper aims to model and analyze planar antennas for high frequencies using an iterative wave design procedure (WCIP). The formulation adopted in the method allowed determining a basic equation for the interaction of linearly combined electromagnetic fields with the incident and reflected waves in various dielectric media over a discontinuity. In this paper, we design a broadband terahertz patch antenna using graphene. We propose to design a new numerical tool to model the implementation of graphene to achieve an efficient and flexible antenna. The design methodology started with the design of a compact conventional microstrip antenna for 118.87 GHz, and the antenna was then miniaturized using rectangular slots. Based on the simulation results, the suggested structure antenna with a slot can offer great characteristics in terms of broadband performance and frequency reconfiguration using various voltages on the graphene. The antenna provides frequency bands fr1 = 118.7 GHz, fr2 = 120 GHz, fr3 = 123.36 GHz, fr4 = 128.27 GHz, fr5 = 131 GHz and fr6 = 132.8 GHz with a bandwidth is Δfr1 = 9.5 GHz, Δfr2 = 3.66 GHz, Δfr3 = 4 GHz, Δfr4 = 3.23 GHz, Δfr5 = 3.401 GHz, Δfr6 = 3.01 GHz and uniform radiation patterns, the value of VSWR between 1 and 2 for different chemical potential value respectively μc = 0.1 eV, μc = 0.2 eV, μc = 0.3 eV, μc = 0.4 eV, μc = 0.5 eV, μc = 0.6 eV using polyimide with a dielectric constant of 3.5 and a loss tangent of 0.008. In addition, we studied the effect of different substrate materials (Arlon and Duroid 5880). The simulation is performed using a new WCIP equation, and the validation is performed by comparison with the finite integration method in technique (FIT). A comparison of the computation time is presented in this paper.
2022-10-04
PIER C
Vol. 125, 51-66
Design of Flexible Dual-Band Tree Fractal Antenna for Wearable Applications
Aya N. Alkhafaji , Sinan M. Abdulsatar and Jawad Kadhim Ali
A dual-band flexible monopole antenna for wearable applications is presented. The antenna structure is built based on Tree-shaped fractal geometry. The suggested antenna is printed on Rogers RT5870, a semi-flexible material with a relative dielectric constant and loss tangent of 2.33 and 0.0012, respectively. According to the results, the proposed antenna achieves dual impedance bandwidth ranging from 1.72 GHz to 1.88 GHz for the lower band and 5.1 GHz to 5.33 GHz for the upper band. The simulated results show that the fractional impedance bandwidths and realized gains of the antenna are 8.9/4.8%, and 1.47/5.67 dBi for the 1.81/5.2 GHz, respectively. The antenna's performance under various bending scenarios has also been demonstrated at both resonant frequencies. The overall size of the proposed antenna is about 45×41×0.25 mm3. The antenna shows good performance to be a candidate for wearable applications.
2022-10-04
PIER C
Vol. 125, 35-49
A Two-Step Learning-by-Examples Method for Photovoltaic Power Forecasting
Alessandro Polo
In this paper, an innovative machine learning (ML) approach for the prediction of the output power generated by photovoltaic (PV) plants is presented. Toward this end, a two-step learning-by-examples (LBE) strategy based on support vector regression (SVR) is proposed to learn the complex relation among the heterogeneous parameters affecting the energy production of the power plant. More specifically, the first step is aimed at down-scaling the weather forecasts from the standard air temperature and the solar irradiance to the local module temperature and the plane-of-array (POA) irradiance. Then, the second step predicts the output power profile given the down-scaled forecasts estimated at the previous step. The advantages and the limitations of the proposed two-step approach have been experimentally analyzed exploiting a set of measurements acquired in a real PV plant. The obtained results are presented and discussed to point out the capabilities of the proposed LBE method to provide robust and reliable power predictions starting from simple weather forecasts.
2022-10-03
PIER C
Vol. 125, 25-34
A Modified Bow-Tie Slot Loaded Cavity Backed Antenna Based on SIW
Anil Kumar Katta and Praveen Babu Choppala
A design of a modified bow-tie slot loaded wideband antenna using a Substrate Integrated Waveguide (SIW) cavity is proposed in this paper. The simple bow-tie slot perturbs the current distribution of the TE120 mode, which generates two hybrid modes, namely odd TE120 and even TE120 modes at 9.6 GHz and 10.8 GHz respectively, but the achieved bandwidth is only 500 MHz (5.2%). To increase the bandwidth, a short rectangular slot is incorporated at the middle of the bow-tie slot, which moves the hybrid odd TE120 mode to 10.2 GHz, near even TE120, which helps to achieve a wide bandwidth of 1.1 GHz ranging 9.9 GHz-11 GHz (10.5%), and also it exhibits a unidirectional radiation pattern. The proposed antenna is fabricated for experimental validation of the modified bow-tie slot antenna. The measured value of bandwidth is 1.1 GHz from 10.1 GHz to 11.2 GHz (10.3%) with a consistent gain of 6.25 dBi, and the variation between co-pol and cross-pol is maximal. Because of the wide bandwidth, high gain and compactness, the suggested antenna is suitable for satellite, radar, and all practical wireless applications of X-band frequencies.
2022-10-03
PIER C
Vol. 125, 15-23
High Performance Millimeter Wave SIW Slotted Array Antenna
Kunooru Bharath , Srujana Vahini Nandigama , Dasari Ramakrishna and Vijay M. Pandharipande
A high performance substrate integrated waveguide (SIW) slotted array antenna with low sidelobe level and optimum gain at 28 GHz is designed, and experimental results are presented with simulated data. In order to achieve a low sidelobe level, Chebyshev power coefficients in the form of slot displacements are applied to the SIW array antenna. A MATLAB program has been written to find these slot displacements. This work entails investigating and designing the optimum microstrip to SIW transition over the Ka-Band, designing a 1 x 8 slotted SIW array antenna, and finally applying the Chebyshev power coefficients to the slots of the 1 x 8 SIW array antenna. The fabricated prototype of a 1 x 8 SIW slotted array antenna is tested, and its performance is studied in terms of gain and half power beam width (HPBW), compared with simulations. The measured results of the 1 x 8 slotted SIW array antenna at 28 GHz have a |S11| of better than -20 dB, a gain of 13 dB, and an HPBW of 17˚. The overall dimensions of the design at 28 GHz are 7.143 mm x 51.8 mm x 0.254 mm (0.667λo  ×  4.84λo ×  0.023λo = 0.0766λo3 mm3).
2022-10-03
PIER C
Vol. 125, 1-13
Design and Analysis of Compact Dual-Band Antenna System for Scalp and Skin Implantation
Moirangthem Santoshkumar Singh , Sourav Roy , Jeet Ghosh , Ujjal Chakraborty , Soumendu Ghosh and Abhishek Sarkhel
This article proposes a compact dual-band circle-shaped implantable antenna for scalp and skin implantation applications. The proposed antenna covers the 1.395-1.432 GHz Wireless Medical Telemetry Service (WMTS) band and 2.4-2.48 GHz Industrial, Scientific, and Medical (ISM) band with a compact volume of 0.0000017λ03. The antenna maintains a realized peak gain of -24.5 dB and -20.6 dB, respectively, at 1.43 GHz and 2.44 GHz. Moreover, the gain pattern of the antenna is in the off-body direction which is a desirable feature for implantable scenario. It also depicts stable responses under different implantation scenarios. Moreover, the via free configuration is an advantageous feature of the proposed antenna in the context of fabrication complexity. Furthermore, a holistic design approach is considered with integrated components for device-level architecture. The resonance behavior of the proposed antenna structure is also analyzed by developing a conceptual equivalent circuit model. The evaluated specific absorption rate (SAR) complies with the regulated human safety standard. The biotelemetry link capability is also evaluated through the link margin (LM) calculation of the proposed antenna and is able to establish a communication link at a range of 4.5 m distance.
2022-10-02
PIER B
Vol. 96, 173-195
Mask-Constrained Synthesis of Domino-Like Tiled Phased Arrays
Luca Tosi and Arianna Benoni
In this work, the mask-constrained synthesis of domino-tiled phased arrays is addressed. By exploiting tiling theorems and theory, optimal and sub-optimal methods for the synthesis of domino arrangements and the corresponding excitations that minimize the deviation of the radiation pattern from a user-defined power mask are presented. A set of numerical examples, carried out with full-wave simulators and concerned with different aperture sizes and various mask shapes, is reported to assess the effectiveness, limitations, and ranges of computationally-admissible applicability of the proposed methods.
2022-09-29
PIER C
Vol. 124, 253-267
Research on the Built-in Tangential and Radial Combined-Pole Permanent Magnet Hub Drive Motor for Electric Vehicles
Shilong Yan , Xueyi Zhang , Zhidong Gao , Mingjun Xu , Lei Wang , Yufeng Zhang , Wenchao Zhang and Kai Geng
In order to solve the problems of high THD (total harmonic distortion) of air-gap magnetic density, large cogging torque and low power density of permanent magnet (PM) hub motor, a built-in tangential and radial PM combined-pole hub motor is proposed in this paper. The magnetic field provided by tangential PM is the main magnetic field, and the magnetic field provided by radial PM plays an auxiliary role in regulation, which can effectively improve the air-gap magnetic density of the motor, reduce the THD of back electromotive force (EMF), and weaken the peak value of cogging torque. Based on the equivalent magnetic circuit method, this paper analyzes the magnetic circuit of the motor, deduces the leakage magnetic flux coefficient, and reduces the leakage magnetic flux by optimizing the structure of the motor. Finally, the prototype is manufactured and tested to verify the effectiveness of finite element analysis. The results show that the designed PM hub drive motor has low THD of back EMF and good sinusoidality of waveform under no-load condition, and good output performance.
2022-09-28
PIER C
Vol. 124, 243-252
New Dual-Passband SIW Filter with Loaded T-Slot
Mingming Gao , Min Li , Jingchang Nan and Yuan Wang
In order to effectively improve filter selectivity and out-of-band rejection level, a multi-cavity two-mode dual-passband filter operating in X-band is proposed. By designing a suitable circuit topology, the bandpasss of the filter are formed using TE201 mode in the substrate integrated waveguide (SIW) cavity and the TE101 mode in the half mode substrate integrated waveguide (HMSIW) cavity. In addition, incorporating a T-slot structure in the dual-mode SIW cavity can add additional transmission zeros (TZs) and improve the filter selectivity while achieving miniaturization. The center frequencies of the two passbands are 8.67 GHz and 11.52 GHz, respectively. The inter-band isolation is better than 65 dB with three transmission zeros and maximum insertion loss of 0.48 dB and 0.31 dB, respectively. The proposed filter has a compact structure, low insertion loss, high-frequency selectivity, and the measured results agree with the simulated ones.
2022-09-28
PIER C
Vol. 124, 227-242
Design Improvements in Double-Stator Axial Flux Switched Reluctance Motor for Smoother Torque Profile
Kalpana Chaudhary , Manoj Pokhriyal and Ayushi Chaudhary
High torque and power generating capability of double-stator axial flux switched reluctance motor (DSAFSRM) makes it superior to conventional and segmented rotor switched reluctance motors. Despite its significant feature, the ripple in developed torque still limits the usefulness of DSAFSRM for widespread industrial application. This paper proposes anj 8/6/8 pole DSAFSRM with modification in rotor pole shape to reduce torque ripples in respective model. The respective phase windings of the upper and lower stators are excited externally by preparing the circuit in Maxwell software. Each rotor tooth is constructed with two types of slots with different levels of air gap to change the inductance profile. Firstly, the design of a conventional DSAFSRM has been presented; thereafter, some geometric modifications in the rotor tooth have been suggested and investigated to obtain a lower torque ripple at 1200 rpm in proposed DSAFSRM. The efficacy of the proposed motor is investigated through finite element method (FEM) based analysis and also by comparative analysis with other types of switched reluctance motors. It can be inferred from the simulation results that the torque ripple is significantly reduced by 111.16% in the proposed DSAFSRM compared to the conventional DSAFSRM. However, the efficiency of the proposed DSAFSRM (73.87%) is slightly less than the conventional DSAFSRM (74.65%).
2022-09-28
PIER C
Vol. 124, 211-225
A Fast Prediction Method for the Radio Propagation Under the Obstacle Environment
Ceyi Ma , Yinghong Wen , Jinbao Zhang and Dan Zhang
To rapidly simulate the forward electromagnetic scattering of multiple obstacles, we propose a new forward scattering prediction model, which can effectively simulate the propagation of electromagnetic waves in a large-scale environment, accurately calculate the scattering of multi-scale structures, and realize multi-region parallel computation. Specifically, the proposed model consists of an obstacle region and a large-scale environment region. To make the model consistent with the real scene quickly and accurately, the time-domain parabolic equation (TDPE) and the discontinuous Galerkin time-domain (DGTD) method are employed to simulate the propagation of electromagnetic waves and the scattering of obstacles, respectively. At the same time, each region is equivalent to a linear time-invariant (LTI) system, and the transfer function of each system is calculated by the discrete Laplace Z-transform to realize multi-region parallel computation. This model can simulate the propagation of the electromagnetic wave in multiple obstacles more quickly under large-scale background than the existing obstacle forward scattering model. Numerical results demonstrate that the proposed model is effective in terms of accuracy and runtime performance.
2022-09-28
PIER Letters
Vol. 107, 9-17
A Novel Fractal Arrow-Shaped mmWave Flexible Antenna for IoT and 5G Communication Systems
Nazih Khaddaj Mallat , Alireza Jafarieh , Hamidreza Noorollahi and Mahdi Nouri
In this paper, a novel flexible antenna for the new ISM band is proposed. A multi-objective optimization based on DDEA-SE is performed to optimize the antenna bandwidth and gain. The proposed optimized antenna has a 4 dB maximum realized gain and 50% maximum radiation efficiency on the ISM band. A fractal structure is used in this design to achieve a multi-band antenna. The bandwidth of this antenna covers several 5G bands. This multi-band antenna is fabricated on a cotton substrate. This antenna has a small dimension which makes it suitable for 5G applications. The bending tests are performed, and both simulation and measurement results show the good performance of the proposed antenna.
2022-09-28
PIER Letters
Vol. 107, 1-7
A Compact Single Layer Filtering Antenna with DGS for 5.1 GHz Application
Hu Chang , Mengxin Liu , Daming Lin and Jie Wang
A compact bandpass filtering antenna operating at 5.1 GHz is introduced. The radiation layer makes up of a U-shaped patch and a trident resonator. The U-shaped patch is both the antenna and the last stage of the filter, which is excited by the insertion coupling part of the trident resonator. To improve the impedance matching and lower stopband suppression, a defective ground structure (DGS) is used. The dimension of the antenna is 0.36λ0×0.36λ0×0.01λ00 is the wavelength at 5.1 GHz) without a complex external feed structure, which has enough bandwidth, a good frequency skirt selectivity, and a flat passband response. The measurement results manifest that the impedance bandwidth is 110 MHz, and the peak gain is 3.88 dBi. In addition, the filtering antenna also has a sharp roll-off rate and a satisfactory level of out-of-band suppression in the stopband.
2022-09-27
PIER
Vol. 175, 127-137
Few-Cycle Electromagnetic Pulses with Finite Energy and Bounded Angular Momentum: Analysis of the Skyrmionic Texture at Focal Plane
Luis Carretero , Pablo Acebal and Salvador Blaya
Exact solutions to Maxwell equations with topological charge based on a modification to Brittingham's single cycle pulses are analyzed demonstrating that they have finite values of energy, momentum and angular momentum. Moreover, the ratio of angular momentum to energy is bounded due to the dependence of the mean frequency on topological charge. We have also analyzed the skyrmionic texture of the electric and magnetic fields showing that it is possible to obtain skyrmionic numbers higher than one for the magnetic field by means of a superposition of pulses with different topological charges and null skyrmionic number.
2022-09-26
PIER C
Vol. 124, 1-10
Influence of Power Frequency Magnetic Field Interference in Substation on 5G Base Station Deployment
Hai Chuan Niu , Jie-Qing Fan and Tian Hao Hou
The limited space of the substation contains a lot of electrical equipment and voltages ranging from hundreds to several thousand volts, resulting in a complex electromagnetic environment in the substation. As the deployment of 5G base stations increases in substations in China, the power-frequency magnetic field in substations will cause problems, resulting in a location problem. This paper develops a circuit model for converter stations, and presents a calculation method that considers the geomagnetic permeability, 3-phase transmission mode, and erection direction influences. The correctness of the calculation method in this paper is verified by comparing the simulation results and calculation results of the substation model. The deployment conditions of 5G base stations in the substation are analyzed according to the national standard of the requirement and measurement methods of electromagnetic compatibility for mobile telecommunications equipment Part 17: 5G base station and ancillary equipment.
2022-09-25
PIER B
Vol. 96, 153-172
Divergence Error Based p-Adaptive Discontinuous Galerkin Solution of Time-Domain Maxwell's Equations
Apurva Tiwari and Avijit Chatterjee
⋅A p-adaptive discontinuous Galerkin time-domain method is developed to obtain high-order solutions to electromagnetic scattering problems. A novel feature of the proposed method is the use of divergence error to drive the p-adaptive method. The nature of divergence error is explored, and that it is a direct consequence of the act of discretization is established. Its relation with relative truncation error is formed which enables the use of divergence error as an inexpensive proxy to truncation error. Divergence error is used as an indicator to dynamically identify and assign spatial operators of varying accuracy to substantial regions in the computational domain. This results in a reduced computational cost compared to a comparable discontinuous Galerkin time-domain solution using uniform degree piecewise polynomial bases throughout. Numerical results are presented to show performance of the proposed divergence error based p-adaptive solutions. It is shown that an accuracy similar to that of uniformly higher order solutions is obtained in terms of the scattering width, using fewer degrees of freedom.
2022-09-25
PIER C
Vol. 124, 197-209
Deep-Learning Linear Sampling Method for Shape Restoration of Multilayered Scatterers
Yu-Hsin Kuo and Jean-Fu Kiang
A deep learning linear sampling method (DLSM), composed of linear sampling method (LSM) and a convolutional neural network (CNN) of U-Net, is proposed to restore shape of multilayered scatterers with cylindrical or rectangular cross section. Simulations over random samples with different geometrical parameters are used to verify the efficacy of the proposed method.