1. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Ed., Cambridge University Press, 1999.
doi:10.1017/CBO9781139644181
2. Ziolkowski, R. W., "Localized transmission of electromagnetic energy," Phys. Rev. A, Vol. 39, 2005-2033, Feb. 1989.
doi:10.1103/PhysRevA.39.2005 Google Scholar
3. Hellwarth, R. W. and P. Nouchi, "Focused one-cycle electromagnetic pulses," Phys. Rev. E, Vol. 54, 889-895, Jul. 1996.
doi:10.1103/PhysRevE.54.889 Google Scholar
4. Brittingham, J., "Focus wave modes in homogeneous Maxwell's equations --- TE-mode," 1982 Antennas and Propagation Society International Symposium, Vol. 20, 656-660, 1982.
doi:10.1109/APS.1982.1148820 Google Scholar
5. Brittingham, J. N., "Focus waves modes in homogeneous Maxwell's equations: Transverse electric mode," Journal of Applied Physics, Vol. 54, No. 3, 1179-1189, 1983.
doi:10.1063/1.332196 Google Scholar
6. Sezginer, A., "A general formulation of focus wave modes," Journal of Applied Physics, Vol. 57, No. 3, 678-683, 1985.
doi:10.1063/1.334712 Google Scholar
7. Zdagkas, A., N. Papasimakis, V. Savinov, M. R. Dennis, and N. I. Zheludev, "Singularities in the flying electromagnetic doughnuts," Nanophotonics, Vol. 8, No. 8, 1379-1385, 2019.
doi:10.1515/nanoph-2019-0101 Google Scholar
8. Shen, Y., Y. Hou, N. Papasimakis, and N. I. Zheludev, "Supertoroidal light pulses as electromagnetic skyrmions propagating in free space," Nature Communications, Vol. 12, 5891, Oct. 2021. Google Scholar
9. Raybould, T., V. Fedotov, N. Papasimakis, I. Youngs, and N. Zheludev, "Focused electromagnetic doughnut pulses and their interaction with interfaces and nanostructures," Opt. Express, Vol. 24, 3150-3161, Feb. 2016.
doi:10.1364/OE.24.003150 Google Scholar
10. Zdagkas, A., C. McDonnell, J. Deng, Y. Shen, G. Li, T. Ellenbogen, N. Papasimakis, and N. I. Zheludev, "Observation of toroidal pulses of light," Nature Photonics, Vol. 16, 523-528, Jul. 2022. Google Scholar
11. Lekner, J., "Electromagnetic pulses which have a zero momentum frame," Journal of Optics A: Pure and Applied Optics, Vol. 5, L15-L18, Apr. 2003.
doi:10.1088/1464-4258/5/4/101 Google Scholar
12. Lekner, J., "Electromagnetic pulses, localized and causal," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 474, No. 2209, 20170655, 2018.
doi:10.1098/rspa.2017.0655 Google Scholar
13. Lekner, J., "Angular momentum of electromagnetic pulses," Journal of Optics A: Pure and Applied Optics, Vol. 6, S128-S133, Feb. 2004.
doi:10.1088/1464-4258/6/3/021 Google Scholar
14. Lekner, J., "Localized electromagnetic pulses with azimuthal dependence," Journal of Optics A: Pure and Applied Optics, Vol. 6, 711-716, Jun. 2004.
doi:10.1088/1464-4258/6/7/009 Google Scholar
15. Lekner, J., Theory of Electromagnetic Pulses, 2053-2571, Morgan and Claypool Publishers, 2018.
16. Ornigotti, M., C. Conti, and A. Szameit, "Effect of orbital angular momentum on nondiffracting ultrashort optical pulses," Phys. Rev. Lett., Vol. 115, 100401, Sep. 2015.
doi:10.1103/PhysRevLett.115.100401 Google Scholar
17. Forbes, A., "Structured light from lasers," Laser & Photonics Reviews, Vol. 13, No. 11, 1900140, 2019.
doi:10.1002/lpor.201900140 Google Scholar
18. Sabatyan, A. and J. Rafighdoost, "Azimuthal phase-shifted zone plates to produce petal-like beams and ring lattice structures," J. Opt. Soc. Am. B, Vol. 34, 919-923, May 2017.
doi:10.1364/JOSAB.34.000919 Google Scholar
19. Barnett, S. M. and L. Allen, "Orbital angular momentum and nonparaxial light beams," Optics Communications, Vol. 110, No. 5, 670-678, 1994.
doi:10.1016/0030-4018(94)90269-0 Google Scholar
20. Porras, M. A., "Upper bound to the orbital angular momentum carried by an ultrashort pulse," Phys. Rev. Lett., Vol. 122, 123904, Mar. 2019.
doi:10.1103/PhysRevLett.122.123904 Google Scholar
21. W. R. Inc. "Mathematica, Version 13.0.0,", Champaign, IL, 2021. Google Scholar
22. Tsesses, S., E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, and G. Bartal, "Optical skyrmion lattice in evanescent electromagnetic fields," Science, Vol. 361, No. 6406, 993-996, 2018.
doi:10.1126/science.aau0227 Google Scholar
23. Deng, Z.-L., T. Shi, A. Krasnok, X. Li, and A. Alu, "Observation of localized magnetic plasmon skyrmions," Nature Communications, Vol. 13, No. 8, Jan. 2022. Google Scholar
24. Nagaosa, N. and Y. Tokura, "Topological properties and dynamics of magnetic skyrmions," Nature Nanotechnology, Vol. 8, 899-911, Dec. 2013.
doi:10.1038/nnano.2013.243 Google Scholar
25. Lin, W., Y. Ota, Y. Arakawa, and S. Iwamoto, "Microcavity-based generation of full poincaré beams with arbitrary skyrmion numbers," Phys. Rev. Research, Vol. 3, 023055, Apr. 2021.
doi:10.1103/PhysRevResearch.3.023055 Google Scholar
26. Gergidis, L. N., V. D. Stavrou, D. Kourounis, and I. A. Panagiotopoulos, "Micromagnetic simulations study of skyrmions in magnetic FePt nanoelements," Journal of Magnetism and Magnetic Materials, Vol. 481, 2019. Google Scholar
27. Gobel, B., I. Mertig, and O. A. Tretiakov, "Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles," Physics Reports, Vol. 895, 1-28, 2021, Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles.
doi:10.1016/j.physrep.2020.10.001 Google Scholar