Vol. 124
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-09-28
A Fast Prediction Method for the Radio Propagation Under the Obstacle Environment
By
Progress In Electromagnetics Research C, Vol. 124, 211-225, 2022
Abstract
To rapidly simulate the forward electromagnetic scattering of multiple obstacles, we propose a new forward scattering prediction model, which can effectively simulate the propagation of electromagnetic waves in a large-scale environment, accurately calculate the scattering of multi-scale structures, and realize multi-region parallel computation. Specifically, the proposed model consists of an obstacle region and a large-scale environment region. To make the model consistent with the real scene quickly and accurately, the time-domain parabolic equation (TDPE) and the discontinuous Galerkin time-domain (DGTD) method are employed to simulate the propagation of electromagnetic waves and the scattering of obstacles, respectively. At the same time, each region is equivalent to a linear time-invariant (LTI) system, and the transfer function of each system is calculated by the discrete Laplace Z-transform to realize multi-region parallel computation. This model can simulate the propagation of the electromagnetic wave in multiple obstacles more quickly under large-scale background than the existing obstacle forward scattering model. Numerical results demonstrate that the proposed model is effective in terms of accuracy and runtime performance.
Citation
Ceyi Ma, Yinghong Wen, Jinbao Zhang, and Dan Zhang, "A Fast Prediction Method for the Radio Propagation Under the Obstacle Environment," Progress In Electromagnetics Research C, Vol. 124, 211-225, 2022.
doi:10.2528/PIERC22081705
References

1. Jost, T., W. Wang, U. Fiebig, and F. Pérez-Fontán, "A wideband satellite-to-indoor channel model for navigation applications," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 5307-5320, 2014.
doi:10.1109/TAP.2014.2344097        Google Scholar

2. Yang, L.-Q., et al. "Simulation analysis and experimental study on the echo characteristics of high-frequency hybrid sky-surface wave propagation mode," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4821-4831, 2018.
doi:10.1109/TAP.2018.2842254        Google Scholar

3. Zhang, P., J. Li, H. Wang, H. Wang, and W. Hong, "Indoor small-scale spatiotemporal propagation characteristics at multiple millimeter-wave bands," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2250-2254, 2018.
doi:10.1109/LAWP.2018.2872051        Google Scholar

4. Wang, D.-D, Y.-R. Pu, X.-L. Xi, and L.-L. Zhou, "Hybrid FDTD-PE method for Loran-C ASF prediction with near-source complex topography," IEEE Antennas and Wireless Propagation Letters, Vol. 14, No. 2, 171-176, 2019.        Google Scholar

5. Alzaix, B., L. Giraud, B. L. Michielsen, and J. Poirier, "A plane wave scattering dedicated integral equation," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 1088-1097, 2020.
doi:10.1109/TAP.2019.2948390        Google Scholar

6. El Ahdab, Z. and F. Akleman, "An efficient 3-D FDTD-PE hybrid model for radio wave propagation with near-source obstacles," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 346-355, 2019.
doi:10.1109/TAP.2018.2876719        Google Scholar

7. Sun, Q., Q. Ren, Q. Zhan, and Q. H. Liu, "3-D domain decomposition based hybrid finite-difference time-domain/finite-element time-domain method with nonconformal meshes," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 10, 3682-3688, 2017.
doi:10.1109/TMTT.2017.2686386        Google Scholar

8. Bao, H. G., D. Z. Ding, and R. S. Chen, "A hybrid spectral-element finite-difference time-domain method for electromagnetic simulation," IEEE Antennas and Wireless Propagation Letters, Vol. 16, No. 8, 2244-2248, 2017.
doi:10.1109/LAWP.2017.2711001        Google Scholar

9. Sun, Q., R. Zhang, Q. Zhan, and Q. H. Liu, "3-D implicit-explicit hybrid finite difference/spectral element/finite element time domain method without a buffer zone," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5469-5476, 2019.
doi:10.1109/TAP.2019.2913740        Google Scholar

10. Yang, X., et al. "A flexible FEM-BEM-DDM for EM scattering by multiscale anisotropic objects," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8562-8573, 2021.
doi:10.1109/TAP.2021.3091196        Google Scholar

11. Zhao, R., Y. Chen, X. -M. Gu, Z. Huang, H. Bagci, and J. Hu, "A local coupling multitrace domain decomposition method for electromagnetic scattering from multilayered dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 10, 7099-7108, 2020.
doi:10.1109/TAP.2020.2993116        Google Scholar

12. Wang, D., et al. "Fast 3-D volume integral equation domain decomposition method for electromagnetic scattering by complex inhomogeneous objects traversing multiple layers," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 958-966, 2020.
doi:10.1109/TAP.2019.2944530        Google Scholar

13. Liu, S., B. Zou, L. Zhang, and S. Ren, "A multi-GPU accelerated parallel domain decomposition one-step leapfrog ADI-FDTD," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 816-820, 2020.
doi:10.1109/LAWP.2020.2981123        Google Scholar

14. Moradi, M., V. Nayyeri, S. Sadrpour, M. Soleimani, and O. M. Ramah, "A 3-D weakly conditionally stable single-field finite-difference time-domain method," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 2, 498-509, 2020.
doi:10.1109/TEMC.2019.2908841        Google Scholar

15. Huang, L., X. Wu, Z. Li, Y. Lu, M. Wang, and Y. Long, "A parallel FDTD/ADI-PE method for ultralarge-scale propagation modeling of ILS signal analysis," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2245-2249, 2020.
doi:10.1109/LAWP.2020.3029193        Google Scholar

16. Chen, J. and Q. H. Liu, "Discontinuous Galerkin time-domain methods for multiscale electromagnetic simulations: A review," Proceedings of the IEEE, Vol. 101, No. 2, 242-254, 2013.
doi:10.1109/JPROC.2012.2219031        Google Scholar

17. Sullivan, D. M., "Frequency-dependent FDTD methods using Z transforms," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 10, 1223-1230, 1992.
doi:10.1109/8.182455        Google Scholar

18. Sullivan, D. M., "Z-transform theory and the FDTD method," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 1, 28-34, 1996.
doi:10.1109/8.477525        Google Scholar

19. Weedon, W. H. and C. M. Rappaport, "A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 401-410, 1997.
doi:10.1109/8.558655        Google Scholar

20. Sullivan, D. M., "Nonlinear FDTD formulations using Z transforms," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 3, 676-682, 1995.
doi:10.1109/22.372115        Google Scholar

21. Abraham, D. S. and D. D. Giannacopoulos, "A convolution-free mixed finite-element time-domain method for general nonlinear dispersive media," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 324-334, 2019.
doi:10.1109/TAP.2018.2874798        Google Scholar

22. Chakarothai, J., "Novel FDTD scheme for analysis of frequency-dependent medium using fast inverse laplace transform and Prony's Method," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 6076-6089, 2019.
doi:10.1109/TAP.2018.2878077        Google Scholar

23. Shibayama, K., K. Suzuki, T. Iwamoto, J. Yamauchi, and H. Nakano, "Dispersive contour-path FDTD algorithm for the Drude-Lorentz Model," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 10, 1699-1703, 2020.
doi:10.1109/LAWP.2020.3014344        Google Scholar

24. Wang, Z., L. Guo, and J. Li, "Analysis of echo characteristics of spatially inhomogeneous and time-varying plasma sheath," IEEE Transactions on Plasma Science, Vol. 49, No. 6, 1804-1811, 2021.
doi:10.1109/TPS.2021.3081262        Google Scholar

25. Han, X., H. Xu, Y. Chang, M. Lin, and X. Wei, "Investigation on the parameters distribution and electromagnetic scattering of radome inductively coupled plasma," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8711-8721, 2021.
doi:10.1109/TAP.2021.3088265        Google Scholar

26. Dolean, V., H. Fah, L. Fezoui, and S. Lanteri, "Locally implicit discontinuous Galerkin method for time domain electromagnetics," J. Comput. Phys., Vol. 229, No. 2, 512-526, 2010.
doi:10.1016/j.jcp.2009.09.038        Google Scholar