Vol. 125
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-10-04
Design, Analysis, and Modeling Using WCIP Method of Novel Microstrip Patch Antenna for THz Applications
By
Progress In Electromagnetics Research C, Vol. 125, 67-82, 2022
Abstract
This paper aims to model and analyze planar antennas for high frequencies using an iterative wave design procedure (WCIP). The formulation adopted in the method allowed determining a basic equation for the interaction of linearly combined electromagnetic fields with the incident and reflected waves in various dielectric media over a discontinuity. In this paper, we design a broadband terahertz patch antenna using graphene. We propose to design a new numerical tool to model the implementation of graphene to achieve an efficient and flexible antenna. The design methodology started with the design of a compact conventional microstrip antenna for 118.87 GHz, and the antenna was then miniaturized using rectangular slots. Based on the simulation results, the suggested structure antenna with a slot can offer great characteristics in terms of broadband performance and frequency reconfiguration using various voltages on the graphene. The antenna provides frequency bands fr1 = 118.7 GHz, fr2 = 120 GHz, fr3 = 123.36 GHz, fr4 = 128.27 GHz, fr5 = 131 GHz and fr6 = 132.8 GHz with a bandwidth is Δfr1 = 9.5 GHz, Δfr2 = 3.66 GHz, Δfr3 = 4 GHz, Δfr4 = 3.23 GHz, Δfr5 = 3.401 GHz, Δfr6 = 3.01 GHz and uniform radiation patterns, the value of VSWR between 1 and 2 for different chemical potential value respectively μc = 0.1 eV, μc = 0.2 eV, μc = 0.3 eV, μc = 0.4 eV, μc = 0.5 eV, μc = 0.6 eV using polyimide with a dielectric constant of 3.5 and a loss tangent of 0.008. In addition, we studied the effect of different substrate materials (Arlon and Duroid 5880). The simulation is performed using a new WCIP equation, and the validation is performed by comparison with the finite integration method in technique (FIT). A comparison of the computation time is presented in this paper.
Citation
Anouar Mondir, Larbi Setti, and Rida El Haffar, "Design, Analysis, and Modeling Using WCIP Method of Novel Microstrip Patch Antenna for THz Applications," Progress In Electromagnetics Research C, Vol. 125, 67-82, 2022.
doi:10.2528/PIERC22080903
References

1. Tuyen, V. V., L. Krishnamurthy, S. Qing, and A. Rezazadeh, "3-D lowloss coplanar waveguide transmission lines in multilayer MMICs," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2864-2871, 2006.
doi:

504 Gateway Time-out


2. Gardner, P., P. Hall, E. Lee, and R. Foster, "Millimetre wave antennas using microstrip and air spaced suspended line techniques for vehicular communications and radar," IEEE Proceedings of The European Conference on Antennas and Propagation, EuCAP 2006, Nice, France, November 6-10, 2006.
doi:The server didn't respond in time.

3. Wasige, E., G. Kompa, F. van Raay, I. W. Rangelow, et al. "Air bridge based planar hybrid technology for microwave and millimeter wave applications," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, No. 6, 925-928, 1997.
doi:

4. Ng, C. H., C.-S. Ho, S.-F. Chu, and S.-C. Sun, "MIM capacitor integration for mixed-signal/RF applications," IEEE Transactions on Electron Devices, Vol. 52, No. 7, 1399-1409, 2005.

5. Gao, X. K., E. K. Chua, and P. E. Li, "Application of integrated transmission line modeling and behavioral modeling on electromagnetic immunity synthesis," IEEE International Symposium on Electromagnetic Compatibility (EMC), 910-915, Long Beach, August 14-19, 2011.

6. Akatimagool, M., H. Aubert, and H. Baudrand, "Analysis of multi-layer integrated inductors with wave concept iterative procedure (WCIP)," IEEE MTT-S International in Microwave Symposium Digest, Vol. 1, No. 10, 1941-1944, 2001.

7. Tellache, M. and H. Baudrand, "Efficient iterative method for characterization of microwave planar circuits," 11th Mediterranean Microwave Symposium (MMS), Vol. 1, No. 10, 265-272, 2001.

8. Mondir, A. and S. Larbi, "A new PIFA antenna for future mobile and wireless communication," E3S Web of Conferences, Vol. 351, 01085, 2022.

9. Mondir, A. and S. Larbi, "Metamaterial inspired patch antenna loaded with an interdigital capacitor for wireless applications," International Journal of Microwave and Optical Technology, IJMOT, Vol. 17, 375-384, 2022.

10. Hussain, M., S. M. R. Jarchavi, S. I. Naqvi, U. Gulza, S. Khan, I. Alibakhshikenari, and I. Huynen, "Design and fabrication of a printed tri-band antenna for 5G applications operating across Ka-, and V-band spectrums," Electronics, Vol. 10, No. 21, 2674, 2021.

11. Hussain, M., A. Mousa, S. M. R. Jarchavi, A. Zaidi, A. I. Najam, A. A. Alotaibi, A. Althobaiti, and S. M. Ghoneim, "Design and characterization of compact broadband antenna and its MIMO configuration for 28 GHz 5G applications," Electronics, Vol. 11, No. 4, 523, 2022.

12. Hussain, M., S. N. R. Rizvi, W. A. Awan, N. Husain, and A. Hameed, "On-demand frequency reconfigurable flexible antenna for 5G sub-6-GHz and ISM band applications," Proceedings of the 6th International Conference on Wireless Technologies, Embedded, and Intelligent Systems, 1085-1092, WITS, Springer, Singapore, 2022.

13. Hussain, M., S. I. Naqvi, W. A. Awan, W. A. E. Ali, E. M. Ali, S. Khan, and M. Alibakhshikenari, "Simple wideband extended aperture antenna-inspired circular patch for V-band communication systems," International Journal of Electronics and Communications, AEU, Vol. 144, 154061, 2022.

14. Hussain, N., T. K. Nguyen, and I. Park, "Performance comparison of a planar substrate-integrated Fabry-Perot cavity antenna with different unit cells at terahertz frequency," 2016 10th European Conference on Antennas and Propagation, EuCAP, 2016.

15. Hussain, N. and I. Park, "Optimization of a small lens for a leaky-wave slit dipole antenna at the terahertz band," International Symposium on Antennas and Propagation, 782-783, IEEE, 2016.

16. El Haffar, R., A. Farkhsi, and O. Mahboub, "Optical properties of MIM plasmonic waveguide with an elliptical cavity resonator," Applied Physics A, Vol. 126, 1-10, 2020.

17. Salouha, A., L. Latrach, A. Gharsallah, A. Gharbi, and H. Baudrand, "Characterization of switchable and multilayered FSS circuits using theWCIP method," IJERA, Vol. 4, No. 10, 109-116, 2014.

18. Kazemi, A. H. and A. Mokhtari, "Graphene-based patch antenna tunable in the three atmospheric windows," Inter. J. Light Electron Opt., Vol. 142, No. 10, 475-482, 2017.

19. Tamagnone, M., J. Gymez-Daz, J. Perruisseau-Carrier, and R. Mosig, "Reconfigurable terahertz plasmonic antenna concept using a graphene stack," Appl. Phys. Lett., Vol. 101, 214101-214104, 2012.

20. Anand, S., D. S. Kumar, R. J.Wu, and M. Chavali, "Graphene nanoribbon based terahertz antenna on polyimide substrate," Optik, Vol. 101, No. 19, 5546-5549, 2014.

21. Nikolaos, M., "Dynamic modulation of plasmon excitations in monolayer graphene,", Doctoral Thesis, University of Southampton, 2017.

22. Azizi, M. K., N. Raveu, A. Gharsallah, and H. Baudrand, "A new approach of almost periodic lumped elements circuits by an iterative method using auxiliary sources," American Journal of Applied Science, Vol. 10, 1457-1472, 2013.

23. Julien, P. C., "Graphene for antenna applications: Opportunities and challenges from microwaves to THz," 2012 Loughborough Antennas and Propagation Conference (LAPC), 2012.

24. Ghajar, A., A. Keshtkar, S. Jarchi, and H. Ghorbaninejad, "Fast designing approach for planar graphene filtering leaky-wave antennas," Optik, Vol. 4, No. 214101, 169284, 2022.

25. Jiang, S., R. Song, Z. Hu, Y. Xin, G. L. Huang, and D. He, "Millimeter wave phased array antenna based on highly conductive graphene-assembled film for 5G applications," Carbon, Vol. 4, No. 190, 493-498, 2022.

26. Fakharian Mohammad, M., "A graphene-based multi-functional terahertz antenna," Optik, Vol. 251, 168431, 2022.

27. Shubham, A., D. Samantaray, S. K. Ghosh, S. Dwivedi, and S. Bhattacharyya, "Performance improvement of a graphene patch antenna using metasurface for THz applications," Optik, Vol. 251, 169412, 2022.

28. Mir, M. S. and A. S. Ramazan, "Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load," J. Opt. Quant. Elec., Vol. 221, 1-13, 2017.

29. Dhillon, S. S., M. S. Vitiello, E. H. Linfield, A. G. Davies, and M. C. Hoffmann, "The 2017 terahertz science and technology roadmap," J. Phy. D: Appl. Phy., Vol. 50, 1064-1076, 2017.

30. Leonardo, V., C. P. Dominique, K. Antonio, A. Konstantin, and B. Ziya, "Plasmawave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, 1-18, 1076, 2017.

31. Liao, S. Y., Microwave Circuit Analysis and Amplifier Design, Prentice-Hall, Inc., 1987.

32. Nuangpirom, P., S. Inchan, and S. Akatimagool, "Wave iterative method for patch antenna analysis," Applied Mathematics, Vol. 6, No. 2, 403, 2015.

33. Sharma, A. and G. Singh, "Rectangular microstirp patch antenna design at THz frequency for short distance wireless communication systems," J. Infrared Millimeter Terahertz Waves, Vol. 30, 1-7, 2009.

34. Deng, X. and Y. Li, "340 GHz on-chip 3-D antenna with 10 dBi gain and 80 radiation efficiency," IEEE Trans. Terahertz Sci. Technol., Vol. 5, 619-627, 2015.

35. Li, C. and Y. Chiul, "340-GHz low-cost and high-gain on-chip higher order mode dielectric resonator antenna for THz applications," IEEE Trans. Terahertz Sci. Technol., Vol. 7, 284-294, 2017.

36. Pitra, K., Z. Raida, and H. Hartnagel, "Design of circularly polarized terahertz antenna with interdigital electrode photomixer," 7th Eur. Conf. Antennas Propagation, EuCAP, Vol. 7, 2431-2434, 2013.

37. Ullah, S., C. Ruan, T. Haq, and X. Zhang, "High performance THz patch antenna using photonic band gap and defected ground structure," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 15, 1943-1954, 2019.

38. Kushwaha, R., P. Karuppanan, and L. Malviya, "Design and analysis of novel microstrip patch antenna on photonic crystal in THz," Phys. B: Condens. Matter, 107-112, 2018.