Vol. 96
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-10-06
A Linear-Complexity Layer-Coupling Algorithm for 1D- and 2D-Periodic Scattering in Multilayered Media
By
Progress In Electromagnetics Research B, Vol. 96, 197-212, 2022
Abstract
The formulation of a matrix-vector product with linear complexity for layer-coupling is discussed in the context of scattering by periodic dielectric scatterers embedded in a layered medium and formulated as a spectral-domain volume integral. It is shown how a traditional formulation in terms of reflection and transmission coefficients can be modified to arrive at an algorithm of linear complexity if used as a matrix-vector product. The computational performance scheme is demonstrated for stacks in which scattering objects are distributed over hundreds of layers.
Citation
Loes Frederique Van Rijswijk, Frank Jaco Buijnsters, and Martijn Constant van Beurden, "A Linear-Complexity Layer-Coupling Algorithm for 1D- and 2D-Periodic Scattering in Multilayered Media," Progress In Electromagnetics Research B, Vol. 96, 197-212, 2022.
doi:10.2528/PIERB22080705
References

1. Samsung Electronics Co., Ltd., , Samsung V-NAND technology, Sept. 2014.

2. Micron, , 176-Layer NAND, https://www.micron.com/products/nand-flash/176-layer-nand, 2020,[Online, Accessed June 2021].

3. SK hynix newsroom "SK hynix Unveils the Industry's Most Multilayered 176-Layer 4D NAND Flash,", https://news.skhynix.com/sk-hynix-unveils-the-industrys-highest-layer-176-layer-4d-nand-flash/, 2020, [Online, Accessed June 2021].

4. Lapedus, M., "3D NAND flash Wars Begin," Semiconductor Engineering, Aug. 2018. [Online, Accesed June 2021]..

5. Maas, J., M. Ebert, K. Bhattacharyya, H. Cramer, A. Becht, S. Keij, R. Plug, A. Fuchs, M. Kubis, T. Hoogenboom, and V. Vaenkates, "YieldStar: A new metrology platform for advanced lithography control," Proc. SPIE. 7985, 27th European Mask and Lithography Conference, 2011.
doi:10.1109/TAP.1966.1138693

6. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1364/JOSA.72.001385

7. Moharam, M. G. and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am., Vol. 72, No. 10, 1385-1392, 1982.
doi:10.1364/JOSAA.13.001870

8. Li, L., "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A., Vol. 13, No. 9, 1870-1876, 1996.
doi:10.1364/JOSAA.14.002758

9. Li, L., "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A., Vol. 14, No. 10, 2758-2767, 1997.
doi:10.1109/TAP.2008.2009695

10. Valerio, G., P. Baccarelli, S. Paulotto, F. Frezza, and A. Galli, "Regularization of mixed-potential layered-media Green's functions for efficient interpolation procedures in planar periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 57, 122-134, 2009.
doi:10.2528/PIERB15071703

11. Jorna, P., V. Lancellotti, and M. C. van Beurden, "Computational aspects of 2D-quasi-periodic-Green-function computations for scattering by dielectric objects via surface integral Equations," Progress In Electromagnetics Research PIER B, Vol. 63, 49-66, 2015.
doi:10.1364/JOSAA.23.000638

12. Chang, Y. C., G. Li, H. Chu, and J. Opsal, "Efficient finite-element Green's function approach for critical-dimension metrology of three-dimensional gratings on multilayer films," J. Opt. Soc. Am. A, Vol. 23, No. 3, 638-645, 2006.
doi:10.1109/TAP.2005.861527

13. Magath, T., "Coupled integral equations for diffraction by profiled, anisotropic, periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 681-686, 2006.
doi:10.1364/JOSAA.27.000308

14. Shi, Y. and C. H. Chan, "Multilevel Green's function interpolation method for analysis of 3-D frequency selective structures using volume/surface integral equation," J. Opt. Soc. Am. A, Vol. 27, 308-318, 2010.
doi:10.1364/JOSAA.28.002269

15. Van Beurden, M. C., "Fast convergence with spectral volume integral equation for crossed block-shaped gratings with improved material interface conditions," J. Opt. Soc. Am. A, Vol. 28, No. 11, 2269-2278, 2011.
doi:10.2528/PIERB11100307

16. Van Beurden, M. C., "A spectral volume integral equation method for arbitrary bi-periodic gratings with explicit Fourier factorization," Progress In Electromagnetic Research B, Vol. 36, 133-149, 2012.
doi:10.1109/8.52240

17. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part 1: Theory," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 3, 335-344, 1990.
doi:10.1109/8.558666

18. Michalski, K. A. and J. R. Mosig, "Multilayered media Green's functions in integral equation formulations," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 508-519, 1997.
doi:10.1109/9780470546307

19. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Wiley-IEEE Press, 1994.
doi:10.1007/BF01389711

20. Gohberg, I. and I. Koltracht, "Numerical solution of integral equations, fast algorithms and Krein-Sobolev equation," Numerical Mathematics, Vol. 47, No. 2, 237-288, 1985.

21. Van Beurden, M. C., T. Zacharopoulou, A. Roc'h, and M. G. M. M. van Kraaij, "A pseudo-spectral longitudinal expansion in a spectral domain integral equation for scattering by periodic dielectric structures," Proceedings of the 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), 1419-1422, Torino, Italy, September 7-11, 2015.

22. Kreyszig, E., Advanced Engineering Mathematics, John Wiley & Sons, 1988.
doi:10.1364/JOSAA.5.001863

23. Ko, D. Y. K. and J. R. Sambles, "Scattering matrix method for propagation of radiation in stratified media: Attenuated total reflection studies of liquid crystals," J. Opt. Soc. Am. A, Vol. 5, No. 11, 1863-1866, 1988.

24. Van Kraaij, M. G. M. M., Forward diffraction modelling: Analysis and application to grating reconstruction, Ph.D. thesis, Ch. 5, Eindhoven University of Technology, 2011.

25. Karawia, A., "A computational algorithm for solving periodic penta-diagonal linear systems," Appl. Math. Comput., Vol. 174, No. 1, 613-618, 2006.