1. Bevacqua, M. and T. Isernia, "Shape reconstruction via equivalence principles, constrained inverse source problems and sparsity promotion," Progress In Electromagnetics Research, Vol. 158, 37-48, 2017.
doi:10.2528/PIER16111404 Google Scholar
2. Bevacqua, M. T. and R. Palmeri, "Qualitative methods for the inverse obstacle problem: A comparison of experimental data," J. Imaging, Vol. 5, No. 4, 47, Apr. 2019.
doi:10.3390/jimaging5040047 Google Scholar
3. Shao, W. and Y. Du, "Microwave imaging by deep learning network: Feasibility and training method," IEEE Trans. Antennas Propagat., Vol. 68, No. 7, 5626-5634, Jul. 2020.
doi:10.1109/TAP.2020.2978952 Google Scholar
4. Agarwal, K., X. Chen, and Y. Zhong, "A multipole-expansion based linear sampling method for solving inverse scattering problems," Optics Express, Vol. 18, No. 6, 6366-6381, 2010.
doi:10.1364/OE.18.006366 Google Scholar
5. Cakoni, F., D. Colton, and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering, SIAM Press, 2011.
doi:10.1137/1.9780898719406
6. Catapano, I., L. Crocco, and T. Isernia, "On simple methods for shape reconstruction of unknown scatterers," IEEE Trans. Antennas Propagat., Vol. 55, No. 5, 1431-1436, May 2007.
doi:10.1109/TAP.2007.895563 Google Scholar
7. Burfeindt, M. J. and H. F. Alqadah, "Qualitative inverse scattering for sparse-aperture data collections using a phase-delay frequency variation constraint," IEEE Trans. Antennas Propagat., Vol. 68, No. 4, 7530-7540, Nov. 2020. Google Scholar
8. Potthast, R., "A study on orthogonality sampling," Inverse Problem, Vol. 26, No. 7, 074015, 2010.
doi:10.1088/0266-5611/26/7/074015 Google Scholar
9. Bevacqua, M. T., T. Isernia, R. Palmeri, M. N. Akinci, and L. Crocco, "Physical insight unveils new imaging capabilities of orthogonality sampling method," IEEE Trans. Antennas Propagat., Vol. 68, No. 5, 4014-4021, May 2020.
doi:10.1109/TAP.2019.2963229 Google Scholar
10. Li, J. Z., H. Y. Liu, and J. Zou, "Strengthened linear sampling method with a reference ball," SIAM J. Sci. Comput., Vol. 31, 4013-4040, 2009.
doi:10.1137/080732389 Google Scholar
11. Crocco, L., L. D. Donato, I. Catapano, and T. Isernia, "An improved simple method for imaging the shape of complex targets," IEEE Trans. Antennas Propagat., Vol. 61, No. 2, 843-851, Feb. 2013.
doi:10.1109/TAP.2012.2220329 Google Scholar
12. Guo, R., Z. Jia, X. Song, M. Li, F. Yang, S. Xu, and A. Abubakar, "Pixel-and model-based microwave inversion with supervised descent method for dielectric targets," IEEE Trans. Antennas Propagat., Vol. 68, No. 12, 8114-8126, Jun. 2020.
doi:10.1109/TAP.2020.2999741 Google Scholar
13. Jun. 2020, Z. and X. D. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Trans. Geosci. Remote Sensing, Vol. 57, No. 4, 1849-1860, Apr. 2019.
doi:10.1109/TGRS.2018.2869221 Google Scholar
14. Ronneberger, O., P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," Medical Image Computing and Computer-Assisted Intervention (MICCAI), 234-241, 2015. Google Scholar
15. Khoshdel, V., A. Ashraf, and J. LoVetri, "Enhancement of multimodal microwave-ultrasound breast imaging using a deep-learning technique," Sensors, Vol. 19, No. 18, 4050, 2019.
doi:10.3390/s19184050 Google Scholar
16. Yao, H. M., W. E. I. Sha, and L. Jiang, "Two-step enhanced deep learning approach for electromagnetic inverse scattering problems," IEEE Antennas Wireless Propagat. Lett., Vol. 18, No. 11, 2254-2258, Jan. 2019.
doi:10.1109/LAWP.2019.2925578 Google Scholar
17. Sanghvi, Y., Y. Kalepu, and U. K. Khankhoje, "Embedding deep learning in inverse scattering problems," IEEE Trans. Comput. Imag., Vol. 6, 46-56, Jul. 2020. Google Scholar
18. Yago, A., M. Cavagnaro, and L. Crocco, "Deep learning-enhanced qualitative microwave imaging: Rationale and initial assessment," EuCAP, 1-5, Dusseldorf, Germany, Mar. 2021. Google Scholar
19. Crocco, L., I. Catapano, L. D. Donato, and T. Isernia, "The linear sampling method as a way to quantitative inverse scattering," IEEE Trans. Antennas Propagat., Vol. 60, No. 4, 1844-1853, Apr. 2012.
doi:10.1109/TAP.2012.2186250 Google Scholar
20. Colton, D., H. Haddar, and M. Piana, "The linear sampling method in inverse electromagnetic scattering theory," Inverse Problem, Vol. 19, 105-137, 2003.
doi:10.1088/0266-5611/19/6/057 Google Scholar
21. Alom, M. Z., M. Hasan, C. Yakopcic, T. M. Taha, and V. K. Asari, "Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation,", arXiv 1802.06955, 2018. Google Scholar
22. Kim, P., MATLAB Deep Learning with Machine Learning, Neural Networks and Artificial Intelligence, APress, 2017.
23. Xu, K., L. Wu, X. Ye, and X. Chen, "Deep learning-based inversion methods for solving inverse scattering problems with phaseless data," IEEE Trans. Antennas Propagat., Vol. 68, No. 11, 7457-7470, Nov. 2020.
doi:10.1109/TAP.2020.2998171 Google Scholar
24. Vedaldi, A., K. Lenc, and A. Gupta, "MatConvNet: Convolutional neural networks for MATLAB," ACM Int. Conf. Multimedia, 689-692, 2015. Google Scholar