1. Maxwell, J. C., A Treatise on Electricity and Magnetism, 1873, Dover Publications, New York, 2007.
2. Smythe, W., Static and Dynamic Electricity, Hemisphere Pub. Corp, New York, 1989.
3. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon, Oxford Oxfordshire New York, 1984.
4. Jackson, J., Classical Electrodynamics, Wiley, New York, 1999.
5. Durand, E., Électrostatique et magnétostatique, Masson et Cie, 1953.
6. Chirgwin, B., C. Plumpton, and C. W. Kilmister, Elementary Electromagnetic Theory. Volume 1: Steady Electric Fields and Currents, Pergamon Press, Oxford, New York, 1971.
7. Schwartz, M., Principles of Electrodynamics, Dover Publications, New York, 1987.
8. Wangsness, R., Electromagnetic Fields, Wiley, New York, 1986.
9. Nayfeh, M. H. and M. Brussel, Electricity and Magnetism, Dover Publications, Inc., Mineola, New York, 2015.
10. Ohanian, H., Classical Electrodynamics, Infinity Science Press, Hingham, Mass, 2007.
11. Greiner, W., Classical Electrodynamics, Springer, New York, 1998.
doi:10.1007/978-1-4612-0587-6
12. Popović, Z. and B. D. Popović, Introductory Electromagnetics, Prentice Hall, Upper Saddle River, NJ, 2000.
13. Müller-Kirsten, H. J. W., Electrodynamics: An Introduction Including Quantum Effects, World Scientific, Hackensack, NJ Singapore, 2004.
doi:10.1142/5510
14. Vanderlinde, J., Classical Electromagnetic Theory, Kluwer Academic Publishers, Dordrecht London, 2004.
15. Zangwill, A., Modern Electrodynamics, Cambridge University Press, Cambridge, 2013.
16. Garg, A., Classical Electromagnetism in a Nutshell, Princeton University Press, Princeton N.J., 2012.
17. Toptygin, I. N., Electromagnetic Phenomena in Matter: Statistical and Quantum Approaches, Wiley-VCH, Weinheim Germany, 2015.
18. Schwinger, J., L. L. DeRaad, K. A. Milton, W. Tsai, and J. Norton, Classical Electrodynamics, Perseus Books, Reading, Mass, 1998.
19. Herrera, W. J. and R. A. Diaz, "The geometrical nature and some properties of the capacitance coefficients based on Laplace's equation," Am. J. Phys., Vol. 76, 55-59, 2008.
doi:10.1119/1.2800355
20. Diaz, R. A. and W. J. Herrera, "The positivity and other properties of the matrix of capacitance: Physical and mathematical implications," J. Electrostat., Vol. 69, 587-595, 2011.
doi:10.1016/j.elstat.2011.08.001
21. Lee, J. M., Introduction to Smooth Manifolds, Springer, New York, 2003.
doi:10.1007/978-0-387-21752-9
22. Federer, H., Geometric Measure Theory, Springer, Berlin New York, 1996.
doi:10.1007/978-3-642-62010-2
23. Morgan, F., Geometric Measure Theory: A Beginner's Guide, Elsevier Ltd., Amsterdam, 2016.
24. Guillemin, V. and V. Pollack, Differential Topology, Prentice-Hall, Englewood Cliffs, N.J., 1974.
25. Lima, E. L., "The Jordan-Brouwer separation theorem for smooth hypersurfaces," Amer. Math. Monthly, Vol. 95, 39-42, 1988.
doi:10.1080/00029890.1988.11971963
26. McGrath, P., "On the smooth jordan brouwer separation theorem," Amer. Math. Monthly, Vol. 123, 292-295, 2016.
doi:10.4169/amer.math.monthly.123.3.292
27. Perles, M. A., H. Martini, and Y. S. Kupitz, "A Jordan-Brouwer separation theorem for polyhedral pseudomanifolds," Disrete Comput. Geom., Vol. 42, 277-304, 2009.
doi:10.1007/s00454-009-9192-0
28. Gilbarg, D. and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Singapore Tokyo, 2001.
doi:10.1007/978-3-642-61798-0
29. Kittel, C., Elementary Statistical Physics, Dover Publications, Mineola, N.Y., 2004.
30. Batygin, V. and I. N. Toptygin, Problems in Electrodynamics, Academic Press, London New York, 1978.
31. Love, R. R., "The electrostatic field of two equal circular co-axial conducting disks," Q. J. Mech. Appl. Math., Vol. 2, No. 4, 428-451, 1949.
doi:10.1093/qjmam/2.4.428
32. Hutson, V., "The circular plate condenser at small separations," Math. Proc. Camb. Philos. Soc., Vol. 59, 211-224, 1963.
doi:10.1017/S0305004100002152
33. Rao, T. V., "Capacity of the circular plate condenser: Analytical solutions for large gaps between the plates," J. Phys. A, Vol. 38, No. 46, 10037-10056, 2005.
doi:10.1088/0305-4470/38/46/010
34. Paffuti, G., E. Cataldo, A. Di Lieto, and F. Maccarrone, "Circular plate capacitor with different discs," Proc. R. Soc. A, Vol. 472, No. 2194, 20160574, 2016.
doi:10.1098/rspa.2016.0574
35. Paffuti, G., "Numerical and analytical results for the two discs capacitor problem," Proc. R. Soc. A, Vol. 73, No. 2197, 20160792, 2017.
doi:10.1098/rspa.2016.0792
36. Erma, V. A., "Perturbation approach to the electrostatic problem for irregularly shaped conductors," J. Math. Phys., Vol. 4, 1517-1526, 1963.
doi:10.1063/1.1703933
37. Pólya, G. and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, 1951.
doi:10.1515/9781400882663
38. Sloggett, G. J., N. G. Barton, and S. J. Spencer, "Fringing fields in disc capacitors," J. Phys. A, Vol. 19, No. 14, 2725-2736, 1986.
doi:10.1088/0305-4470/19/14/012
39. James, M. C. and J. R. Solheim, "The effect of trapped charge on series capacitors," Am. J. Phys., Vol. 83, No. 7, 621-627, 2015.
doi:10.1119/1.4916888
40. Olyslager, F., Electromagnetic Waveguides and Transmission Lines, Oxford University Press, Oxford New York, 1999.
41. Bhunia, S., S. Mukhopadhyay, and ed., Low-power Variation-tolerant Design in Nanometer Silicon, Springer, New York, 2011.
doi:10.1007/978-1-4419-7418-1
42. Cardoso, D. B., E. T. de Andrade, R. A. A. Calderón, M. H. S. Rabelo, C. de A. Dias, and I. Á. Lemos, "Determination of thermal properties of coffee beans at different degrees of roasting," Coffee Science, Vol. 13, No. 4, 498-509, 2018.
doi:10.25186/cs.v13i4.1491
43. Zaremba, S., "Sur le principe de dirichlet," Acta Math., Vol. 34, 293-316, 1911.
doi:10.1007/BF02393130
44. Lebesgue, H., "Sur des cas d'impossibilité du problème de Dirichlet ordinaire," C.R. Séances Soc. Math. France, 17, 1913.
45. Armitage, D. H. and S. J. Gardiner, Classical Potential Theory, Springer, London, 2001.
doi:10.1007/978-1-4471-0233-5
46. Van Bladel, J. G., Electromagnetic Fields, Wiley-Interscience John Wiley, Distributor, Hoboken, N.J. Chichester, 2007.
doi:10.1002/047012458X
47. Salsa, S., Partial Differential Equations in Action: From Modelling to Theory, Springer, Cham, 2015.
doi:10.1007/978-3-319-15093-2_2
48. Evans, L., Partial Differential Equations, American Mathematical Society, Providence, R.I, 2010.
49. Grisvard, P., Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics, Philadelphia, Pa, 2011.
doi:10.1137/1.9781611972030
50. Serrin, J. and H. F. Weinberger, "Isolated singularities of solutions of linear elliptic equations," Am. J. Math., Vol. 88, 258-272, 1966.
doi:10.2307/2373060
51. Mitrea, D. and I. Mitrea, "On the Besov regularity of conformal maps and layer potentials on nonsmooth domains," J. Funct. Anal., Vol. 201, No. 2, 380-429, 2003.
doi:10.1016/S0022-1236(03)00086-7
52. Meyers, N. and J. Serrin, "The exterior dirichlet problem for second order elliptic partial differential equations," J. Math. Mech., Vol. 9, 513-538, 1960.
53. Moser, J., "On Harnack's theorem for elliptic differential equations," Commun. Pure Appl. Math., Vol. 14, 577-591, 1961.
doi:10.1002/cpa.3160140329
54. Simon, B., Harmonic Analysis. A Comprehensive Course in Analysis, Part 3, American Mathematical Society, Providence, Rhode Island, 2015.
55. Han, Q. and F. Lin, Elliptic Partial Differential Equations, American Mathematical Society, New York, N.Y. Providence, R.I, 2011.
56. Morrey, Jr., C. B. and L. Nirenberg, "On the analyticity of the solutions of linear elliptic systems of partial differential equations," Commun. Pure Appl. Math., Vol. 10, 271-290, 1957.
doi:10.1002/cpa.3160100204
57. Morrey, Jr., C. B., "On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations: Part I. Analyticity in the interior," Am. J. Math., Vol. 10, 198-218, 1958.
doi:10.2307/2372830
58. Morrey, C., Multiple Integrals in the Calculus of Variations, Springer, Berlin, 2008.