1. Maxwell, J. C., A Treatise on Electricity and Magnetism, 1873, Dover Publications, 2007.
2. Smythe, W., Static and Dynamic Electricity, Hemisphere Pub. Corp, 1989.
3. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon, 1984.
4. Jackson, J., Classical Electrodynamics, Wiley, 1999.
5. Durand, E., Électrostatique et magnétostatique, Masson et Cie, 1953.
6. Chirgwin, B., C. Plumpton, and C. W. Kilmister, Elementary Electromagnetic Theory. Volume 1: Steady Electric Fields and Currents, Pergamon Press, 1971.
7. Schwartz, M., Principles of Electrodynamics, Dover Publications, 1987.
8. Wangsness, R., Electromagnetic Fields, Wiley, 1986.
9. Nayfeh, M. H. and M. Brussel, Electricity and Magnetism, Dover Publications, Inc., 2015.
10. Ohanian, H., Classical Electrodynamics, Infinity Science Press, 2007.
11. Greiner, W., Classical Electrodynamics, Springer, 1998.
doi:10.1007/978-1-4612-0587-6
12. Popović, Z. and B. D. Popović, Introductory Electromagnetics, Prentice Hall, 2000.
13. Müller-Kirsten, H. J. W., Electrodynamics: An Introduction Including Quantum Effects, World Scientific, 2004.
doi:10.1142/5510
14. Vanderlinde, J., Classical Electromagnetic Theory, Kluwer Academic Publishers, 2004.
15. Zangwill, A., Modern Electrodynamics, Cambridge University Press, 2013.
16. Garg, A., Classical Electromagnetism in a Nutshell, Princeton University Press, 2012.
17. Toptygin, I. N., Electromagnetic Phenomena in Matter: Statistical and Quantum Approaches, Wiley-VCH, 2015.
18. Schwinger, J., L. L. DeRaad, K. A. Milton, W. Tsai, and J. Norton, Classical Electrodynamics, Perseus Books, 1998.
19. Herrera, W. J. and R. A. Diaz, "The geometrical nature and some properties of the capacitance coefficients based on Laplace's equation," Am. J. Phys., Vol. 76, 55-59, 2008.
doi:10.1119/1.2800355 Google Scholar
20. Diaz, R. A. and W. J. Herrera, "The positivity and other properties of the matrix of capacitance: Physical and mathematical implications," J. Electrostat., Vol. 69, 587-595, 2011.
doi:10.1016/j.elstat.2011.08.001 Google Scholar
21. Lee, J. M., Introduction to Smooth Manifolds, Springer, 2003.
doi:10.1007/978-0-387-21752-9
22. Federer, H., Geometric Measure Theory, Springer, 1996.
doi:10.1007/978-3-642-62010-2
23. Morgan, F., Geometric Measure Theory: A Beginner's Guide, Elsevier Ltd., 2016.
24. Guillemin, V. and V. Pollack, Differential Topology, Prentice-Hall, 1974.
25. Lima, E. L., "The Jordan-Brouwer separation theorem for smooth hypersurfaces," Amer. Math. Monthly, Vol. 95, 39-42, 1988.
doi:10.1080/00029890.1988.11971963 Google Scholar
26. McGrath, P., "On the smooth jordan brouwer separation theorem," Amer. Math. Monthly, Vol. 123, 292-295, 2016.
doi:10.4169/amer.math.monthly.123.3.292 Google Scholar
27. Perles, M. A., H. Martini, and Y. S. Kupitz, "A Jordan-Brouwer separation theorem for polyhedral pseudomanifolds," Disrete Comput. Geom., Vol. 42, 277-304, 2009.
doi:10.1007/s00454-009-9192-0 Google Scholar
28. Gilbarg, D. and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001.
doi:10.1007/978-3-642-61798-0
29. Kittel, C., Elementary Statistical Physics, Dover Publications, 2004.
30. Batygin, V. and I. N. Toptygin, Problems in Electrodynamics, Academic Press, 1978.
31. Love, R. R., "The electrostatic field of two equal circular co-axial conducting disks," Q. J. Mech. Appl. Math., Vol. 2, No. 4, 428-451, 1949.
doi:10.1093/qjmam/2.4.428 Google Scholar
32. Hutson, V., "The circular plate condenser at small separations," Math. Proc. Camb. Philos. Soc., Vol. 59, 211-224, 1963.
doi:10.1017/S0305004100002152 Google Scholar
33. Rao, T. V., "Capacity of the circular plate condenser: Analytical solutions for large gaps between the plates," J. Phys. A, Vol. 38, No. 46, 10037-10056, 2005.
doi:10.1088/0305-4470/38/46/010 Google Scholar
34. Paffuti, G., E. Cataldo, A. Di Lieto, and F. Maccarrone, "Circular plate capacitor with different discs," Proc. R. Soc. A, Vol. 472, No. 2194, 20160574, 2016.
doi:10.1098/rspa.2016.0574 Google Scholar
35. Paffuti, G., "Numerical and analytical results for the two discs capacitor problem," Proc. R. Soc. A, Vol. 73, No. 2197, 20160792, 2017.
doi:10.1098/rspa.2016.0792 Google Scholar
36. Erma, V. A., "Perturbation approach to the electrostatic problem for irregularly shaped conductors," J. Math. Phys., Vol. 4, 1517-1526, 1963.
doi:10.1063/1.1703933 Google Scholar
37. Pólya, G. and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, 1951.
doi:10.1515/9781400882663
38. Sloggett, G. J., N. G. Barton, and S. J. Spencer, "Fringing fields in disc capacitors," J. Phys. A, Vol. 19, No. 14, 2725-2736, 1986.
doi:10.1088/0305-4470/19/14/012 Google Scholar
39. James, M. C. and J. R. Solheim, "The effect of trapped charge on series capacitors," Am. J. Phys., Vol. 83, No. 7, 621-627, 2015.
doi:10.1119/1.4916888 Google Scholar
40. Olyslager, F., Electromagnetic Waveguides and Transmission Lines, Oxford University Press, 1999.
41. Bhunia, S., S. Mukhopadhyay, and ed., Low-power Variation-tolerant Design in Nanometer Silicon, Springer, 2011.
doi:10.1007/978-1-4419-7418-1
42. Cardoso, D. B., E. T. de Andrade, R. A. A. Calderón, M. H. S. Rabelo, C. de A. Dias, and I. Á. Lemos, "Determination of thermal properties of coffee beans at different degrees of roasting," Coffee Science, Vol. 13, No. 4, 498-509, 2018.
doi:10.25186/cs.v13i4.1491 Google Scholar
43. Zaremba, S., "Sur le principe de dirichlet," Acta Math., Vol. 34, 293-316, 1911.
doi:10.1007/BF02393130 Google Scholar
44. Lebesgue, H., "Sur des cas d'impossibilité du problème de Dirichlet ordinaire," C.R. Séances Soc. Math. France, 17, 1913. Google Scholar
45. Armitage, D. H. and S. J. Gardiner, Classical Potential Theory, Springer, 2001.
doi:10.1007/978-1-4471-0233-5
46. Van Bladel, J. G., Electromagnetic Fields, Wiley-Interscience John Wiley, 2007.
doi:10.1002/047012458X
47. Salsa, S., Partial Differential Equations in Action: From Modelling to Theory, Springer, 2015.
doi:10.1007/978-3-319-15093-2_2
48. Evans, L., Partial Differential Equations, American Mathematical Society, 2010.
49. Grisvard, P., Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics, 2011.
doi:10.1137/1.9781611972030
50. Serrin, J. and H. F. Weinberger, "Isolated singularities of solutions of linear elliptic equations," Am. J. Math., Vol. 88, 258-272, 1966.
doi:10.2307/2373060 Google Scholar
51. Mitrea, D. and I. Mitrea, "On the Besov regularity of conformal maps and layer potentials on nonsmooth domains," J. Funct. Anal., Vol. 201, No. 2, 380-429, 2003.
doi:10.1016/S0022-1236(03)00086-7 Google Scholar
52. Meyers, N. and J. Serrin, "The exterior dirichlet problem for second order elliptic partial differential equations," J. Math. Mech., Vol. 9, 513-538, 1960. Google Scholar
53. Moser, J., "On Harnack's theorem for elliptic differential equations," Commun. Pure Appl. Math., Vol. 14, 577-591, 1961.
doi:10.1002/cpa.3160140329 Google Scholar
54. Simon, B., Harmonic Analysis. A Comprehensive Course in Analysis, Part 3, American Mathematical Society, 2015.
55. Han, Q. and F. Lin, Elliptic Partial Differential Equations, American Mathematical Society, 2011.
56. Morrey, Jr., C. B. and L. Nirenberg, "On the analyticity of the solutions of linear elliptic systems of partial differential equations," Commun. Pure Appl. Math., Vol. 10, 271-290, 1957.
doi:10.1002/cpa.3160100204 Google Scholar
57. Morrey, Jr., C. B., "On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations: Part I. Analyticity in the interior," Am. J. Math., Vol. 10, 198-218, 1958.
doi:10.2307/2372830 Google Scholar
58. Morrey, C., Multiple Integrals in the Calculus of Variations, Springer, 2008.