Vol. 1
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-11-08
Meandered Slot and Slit Loaded Compact Microstrip Antenna with Integrated Impedance Tuning Network
By
Progress In Electromagnetics Research B, Vol. 1, 219-235, 2008
Abstract
In this paper, novel compact broadband dual frequency microstrip antennas are presented and broad-band impedance matching is proposed as a method for improve the matching level of antennas. The first proposed design consists of a rectangular microstrip antenna with a pair of parallel slots loaded close to the radiating edge of the patch and three meandering narrow slots embedded in the antenna surface. The second proposed design consists of a rectangular microstrip antenna with a meandering slits. With the first proposed design a size reduction of 34% and 45% for the two resonant frequencies is obtained respectively. The two frequencies have an operation frequency ratio of 1.30 and 1.25. The theoretical design implementation of compensated compact rectangular microstrip antennas with new configuration Pi-matching networks was presented. A new compensation network consisting of RC Mutator circuit and discrete capacitors are employed at the input of the microstrip antenna operating at 1.5 GHz and 2.5 GHz. The performance parameters of the designed microstrip antenna with and without compensation network were compared. The results show that compensation network can improve the return loss level and the resonant frequency can be controlled in a wide RF band.
Citation
Adnan Kaya, "Meandered Slot and Slit Loaded Compact Microstrip Antenna with Integrated Impedance Tuning Network," Progress In Electromagnetics Research B, Vol. 1, 219-235, 2008.
doi:10.2528/PIERB07102601
References

1. Wong, K. L. and S. C. Pan, "Compact triangular microstrip antenna VLF antenna modeling," Electron. Lett., Vol. 33, 433-434, 1997.
doi:10.1049/el:19970332

2. Tang, C. L., H. T. Chen, and K. L. Wong, "Small circular microstrip antenna with dual frequency operation," Electron. Lett., Vol. 33, 1112-1113, 1997.
doi:10.1049/el:19970772

3. Kuo, J. S. and K. L. Wong, "A compact microstrip antenna with meandering slots in the ground plane," Microwave Opt. Techn. Lett., Vol. 29, 95-97, 2001.
doi:10.1002/mop.1095

4. Zhao, G., F.-S. Zhang, Y. Song, Z.-B. Weng, and Y.-C. Jiao, "Compact ring monopole antenna with double meander lines for 2.4/5 GHz dual-band operation," Progress In Electromagnetics Research, Vol. 72, 187-194, 2007.
doi:10.2528/PIER07031405

5. Liu, W. C. and Y. T. Kao, "CPW-FED compact meandered strip antenna on a soft substrate for dualband WLAN communication," Journal of Electromagnetic Waves and Applications, Vol. 7, 987-995, 2007.
doi:10.1163/156939307780749002

6. Shynu, S. V., G. Augustin, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "Design of compact reconfigurable dual frequency microstrip antennas using varactor diodes," Progress In Electromagnetics Research, Vol. 60, 197-205, 2006.
doi:10.2528/PIER05120101

7. Wang, Y. J. and C. K. Lee, "Compact and broadband microstrip patch antenna for the 3g IMT-2000 handsets applying styrofoam and shorting-posts," Progress In Electromagnetics Research, Vol. 47, 75-85, 2004.
doi:10.2528/PIER03100901

8. Elsadek, H. and D. Nashaat, "Quad band compact size trapezoidal PIFA antenna," Journal of Electromagnetic Waves and Applications, Vol. 21, 865-876, 2007.
doi:10.1163/156939307780749020

9. Mingo, J., A. Valdovinos, A. Crepo, and P. Garcia, "An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system," IEEE Trans. on Microwave Theory and Tech., Vol. 52, 489-492, 2004.
doi:10.1109/TMTT.2003.821909

10. Pues, H. F. and A. R. Van de Capelle, "An impedance matching technique for increasing the bandwidth of microstrip antennas," IEEE Trans. on Antennas and Propagation, Vol. 37, 1345-1354, 1989.
doi:10.1109/8.43553

11. Kaya, A., S. Kln, E. Y. Y¨uksel, and U. Cam, "Bandwidth enhancement of a microstrip antenna using negative inductance as impedance matching device," Microwave and Optical Technology Letters, Vol. 42, 476-478, 2004.
doi:10.1002/mop.20342

12. Thompson, M. and J. K. Fidler, "Determination of the impedance matching domain of impedance matching networks," IEEE Trans. on Circuits and Systems, Vol. 51, 2098-2106, 2004.
doi:10.1109/TCSI.2004.835682

13. Goras, L., "Linear and nonlinear mutators derived from GIC-type configurations," IEEE Trans. on circuits and systems, Vol. 28, 165-169, 1981.
doi:10.1109/TCS.1981.1084948

14. Antoniou, A., "Novel RC-active network synthesis using generalized immitance converters," IEEE Trans. on Circuit Theory, Vol. 17, 1970.

15. Bilotti, F., F. Urbani, and L. Vegni, "Design of an active integrated antenna for a PCMCIA card," Progress In Electromagnetics Research, Vol. 61, 253-270, 2006.
doi:10.2528/PIER06012002

16. Alkanhal, M. and A. F. Sheta, "A novel dual-band reconfigurable square-ring microstrip antenna," Progress In Electromagnetics Research, Vol. 70, 337-349, 2007.
doi:10.2528/PIER07020703

17. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to microwave/mm-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
doi:10.2528/PIER07081401

18. Sadat, S., M. Fardis, F. G. Kharakhili, and G. Dadashzadeh, "A compact microstrip square-ring slot antenna for UWB applications," Progress In Electromagnetics Research, Vol. 67, 173-179, 2007.
doi:10.2528/PIER06082901