Vol. 4
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-01-10
Analysis of Output Power Delay in Coaxial Vircator
By
Progress In Electromagnetics Research B, Vol. 4, 1-12, 2008
Abstract
In this paper, a virtual cathode oscillator (VCO) is simulated based on FDTD algorithm. The geometrical structure is coaxial. Electromagnetic fields and current graphs are calculated. For the first time it has been shown that the delay between input pulse and output microwave signal originate from the waveguide transition delay time and the virtual cathode generation loop delay time.
Citation
Gholamreza Moradi, Ayaz Ghorbani, M. Rahdan, and H. Khadem, "Analysis of Output Power Delay in Coaxial Vircator," Progress In Electromagnetics Research B, Vol. 4, 1-12, 2008.
doi:10.2528/PIERB07122501
References

1. Carron, N. J., "Fields of particles and beams exiting a conductor," Progress In Electromagnetics Research, Vol. 28, 147-183, 2000.
doi:10.2528/PIER99080102

2. Li, Z. and J. Cui, "Sandwich-structure waveguides for very high-power generation and transmission using left-handed materials," Progress In Electromagnetics Research, Vol. 69, 101-116, 2007.
doi:10.2528/PIER06121001

3. Benford, J., J. A. Swegle, and E. Schamiloglu, High Power Microwaves, 2nd Ed., Taylor & Francis, 2007.

4. Zherlitsyn, A. G., "Microwave generation by triode with coaxial-type virtual cathode," Pis’ma Zh. Tekh. Fiz., Vol. 16, No. 22, 78-80, 1990.

5. Jiang, W., K. Woolverton, J. Dickens, and M. Kristiansen, "High power microwave generation by a coaxial virtual cathode oscillator," IEEE Trans. Plasma Sci., Vol. 27, No. 15, 1538-1542, 1999.
doi:10.1109/27.799836

6. Wang, Y. J., W. J. Koh, C. K. Lee, and K. Y. See, "Electromagnetic coupling analysis of transient signal through slots or apertures perforated in a shielding metallic enclosure using FDTD methodology," Progress In Electromagnetics Research, Vol. 36, 247-264, 2002.
doi:10.2528/PIER02021701

7. Idemen, M., "Derivation of the Lorentz transformations from Maxwell equations," Journal of Electromagnetic Waves and Applications, Vol. 19, 451, 2005.
doi:10.1163/1569393053303884

8. Jiang, W., K. Masugata, and K. Yatsui, "Mechanism of microwave generation by virtual cathode oscillation," Phys. Plasmas, Vol. 2, No. 3, 982-986, 1995.
doi:10.1063/1.871377

9. Platt, R., B. Anderson, J. Christofferson, J. Enns, M. Haworth, J. Metz, P. Pelletier, R. Rupp, and D. Voss, "Low-frequency, multigigawattmicrowave pulses generated by a virtual cathode oscillator," Appl. Phys. Lett., Vol. 54, No. 13, 1215-1216, 1989.
doi:10.1063/1.100719

10. Fazio, M. V., R. F. Hoeberling, and J. K. Wright, "Narrow-band microwave generation from an oscillating virtual cathode in a resonantcavity," J. Appl. Phys., Vol. 65, No. 3, 1321-1327, 1989.
doi:10.1063/1.343028

11. Scarpetti, R. D. and S. C. Burkhart, "The study of a reflex oscillatorused to generate high-power microwaves," IEEE Trans. Plasma Sci., Vol. 13, No. 6, 506-512, 1985.
doi:10.1109/TPS.1985.4316465

12. Davis, H. A., R. R. Bartsch, L. E. Thode, E. G. Sherwood, and R. M. Stringfield, "High-power microwave generation from a virtual cathodedevice," Phys. Rev. Lett., Vol. 55, No. 21, 2293-2296, 1985.
doi:10.1109/TPS.1985.4316463

13. Sze, H., J. Benford, T. Young, D. Bromley, and B. Harteneck, "A radiallyand axially extracted virtual-cathode oscillator (vircator)," IEEE Trans. Plasma Sci., Vol. 13, No. 6, 492-497, 1985.
doi:10.2528/PIER05050903

14. Puccini, A., "About the interference induced by electrons why does the electron behave like a wave," Progress In Electromagnetics Research, Vol. 58, 199-222, 2006.
doi:10.2528/PIER05041403

15. Bopp III, C. L. and C. M. Butler, "Analysis of transmission of a signal through a complex cylindrical/coaxial cavity by transmission line methods," Progress In Electromagnetics Research, Vol. 56, 33-51, 2006.
doi:10.2528/PIER06071102

16. Soliman, E. A., A. Helaly, and A. A. Megahed, "Propagation of electromagnetic waves in planar bounded plasma region," Progress In Electromagnetics Research, Vol. 67, 25-37, 2007.
doi:10.1163/156939306777443015

17. Rothenstein, B., S. Popescu, and G. J. Spix, "Relativistic derivations of the electric and magnetic fields generated by an electric point charge moving with constant velocity," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1189-1194, 2006.
doi:10.2528/PIER04052001

18. Sabry, R. and S. K. Chaudhuri, "Formulation of emission from relativistic free electrons in a ring structure for electro-optical applications," Progress In Electromagnetics Research, Vol. 50, 135-161, 2005.
doi:10.1109/TPS.2006.875762

19. Xing, Q., D. Wang, F. Huang, and J. Deng, "Two-dimensional theoretical analysis of the dominant frequency in the inward-emitting coaxial vircator," IEEE Trans. Plasma Sci., Vol. 34, No. 3, 584-589, 2006.
doi:10.2528/PIER97050700

20. Hillion, P., "Electromagnetic pulses in dispersive media," Progress In Electromagnetics Research, Vol. 18, 245-260, 1998.
doi:10.2528/PIER02021703

21. Hillion, P., "Electromagnetic pulse propagation in dispersive media," Progress In Electromagnetics Research, Vol. 35, 299-314, 2002.
doi:10.2528/PIER05051201

22. Sten, J. C. and A. Hujanen, "Aspects on the phase delay and phase velocity in the electromagnetic near-field," Progress In Electromagnetics Research, Vol. 56, 67-80, 2006.