Vol. 12
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-01-12
Electromagnetic Transmission through Fractal Apertures in Infinite Conducting Screen
By
Progress In Electromagnetics Research B, Vol. 12, 105-138, 2009
Abstract
Fractals contain an infinite number of scaled copies of a starting geometry. Due to this fundamental property, they offer multiband characteristics and can be used for miniaturization of antenna structures. In this paper, electromagnetic transmission through fractal shaped apertures in an infinite conducting screen has been investigated for a number of fractal geometries like Sierpinski gasket, Sierpinski carpet, Koch curve, Hilbert Curve and Minkowski fractal. Equivalence principle and image theory are applied to obtain an operator equation in terms of equivalent surface magnetic current over the aperture surface. The operator equation is then solved using method of moments (MoM) with the aperture surface modeled using triangular patches. Numerical results are presented in terms of transmission coefficient and transmission cross-section for both parallel and perpendicular polarizations of incident plane wave which show the existence of multiple transmission bands.
Citation
Basudeb Ghosh, Sachendra N. Sinha, and Machavaram Kartikeyan, "Electromagnetic Transmission through Fractal Apertures in Infinite Conducting Screen," Progress In Electromagnetics Research B, Vol. 12, 105-138, 2009.
doi:10.2528/PIERB08121005
References

1. Rahmat-Samii, Y. and R. Mittra, "Electromagnetic coupling through small apertures in a conducting screen," IEEE Trans. Antennas Propagat., Vol. 25, 180-187, Mar. 1977.
doi:10.1109/TAP.1977.1141554

2. Sarkar, T. K., M. F. Costa, I. Chin-Lin, and R. F. Harrington, "Electromagnetic transmission through mesh covered apertures and aperture arrays of apertures in a conducting screen ," IEEE Trans. Antennas Propagat., Vol. 32, 908-913, Sept. 1984.
doi:10.1109/TAP.1984.1143435

3. Andersson, T., "Momen t-Method calculations on apertures using basis singular function," IEEE Trans. Antennas Propagat., Vol. 41, 1709-1716, Dec. 1993.
doi:10.1109/8.273329

4. Park, H. and H. J. Eom, "Electromagnetic scattering from multiple rectangular apertures in a thick conducting screen," IEEE Trans. Antennas Propagat., Vol. 47, No. 6, 1056-1060, June 1999.
doi:10.1109/8.777131

5. Park, Y. B. and H. J. Eom, "Electromagnetic transmission through multiple circular apertures in a thick conducting plane," IEEE Trans. Antennas Propagat., Vol. 52, No. 4, 1049-1055, Apr. 2004.
doi:10.1109/TAP.2004.825679

6. Chen, C. C., "Transmission of microwave through perforated flat plates of finite thickness," IEEE Trans. Microwave Theory Tech., Vol. 21, 1-6, Jan. 1973.
doi:10.1109/TMTT.1973.1127906

7. Werner, D. H. and R. Mittra (eds.), Frontiers in Electromagnetics, Chapter 1–3,Piscat away,N J, IEEE Press,2000.

8. Romeu, J. and Y. Rahmat-Samii, "Fractal FSS: A novel dual-band frequency selective surface," IEEE Trans. Antennas Propagat., Vol. 48, 1097-1105, July 2000.

9. Gianvittorio, J. P., J. Romeu, S. Blanch, and Y. Rahmat-Samii, "Self-similar prefractal frequency selective surfaces for multiband and dual polarized applications," IEEE Trans. Antennas Propagat., Vol. 51, 3088-3096, Nov. 2003.

10. McVay, J., N. Engheta, and A. Hoorfar, "High impedance metamaterial surfaces using Hilbert curve inclusions," IEEE Microwave and Wireless Components Letters, Vol. 14, 130-132, Mar. 2004.
doi:10.1109/LMWC.2003.822571

11. Wen, W., L. Zhou, J. Li, W. Ge, and C. T. Chan P. Sheng, "Subwavelength photonic band gaps from planar fractals," Physical Review Lett., Vol. 89, No. 22, 223901, Nov. 2002.
doi:10.1103/PhysRevLett.89.223901

12. Zhou, L., C. T. Chan, and P. Sheng, "Theoritical studies on the transmission and reflection properties of metallic planar fractals," J. Phys. D: Applied Phys., Vol. 37, 368-373, 2004.
doi:10.1088/0022-3727/37/3/009

13. Hou, B., G. Xu, and W. Wen, "Tunable band gap properties of planar metallic fractals," J. Appl. Phys., Vol. 95, No. 6, 3231-3233, Mar. 2004.
doi:10.1063/1.1647266

14. Wen, W., L. Zhou, B. Hou, C. T. Chan, and P. Sheng, "Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate," Physical Review B72, 153406, 2005.

15. Harrington, R. F. and J. R. Mautz, "A generalized network formulation for aperture problems," IEEE Trans. Antennas Propagat., Vol. 24, 870-873, Nov. 1976.
doi:10.1109/TAP.1976.1141420

16. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

17. Chin-Lin, I. and R. F. Harrington, "Electromagnetic transmission through an aperture of arbitrary shape in a conducting screen,", Tech Rep-82-5 on Contract N00014-76-C-0025, Syracuse Univ., Apr. 1982.

18. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas Propagat., Vol. 32, 276-281, Mar. 1984.
doi:10.1109/TAP.1984.1143304

19. Graglia, R. D., "On the numerical integration of the linear shape functions times the 3D Green's function or its gradient on a plane triangle," IEEE Trans. Antennas Propagat., Vol. 41, 1448-1455, Oct. 1993.

20. Eibert, T. F. and V. Hansen, "On the calculation of potential integrals for linear source distributions on triangular domains," IEEE Trans. Antennas Propagat., Vol. 43, 1499-1502, Dec. 1995.
doi:10.1109/8.475946

21. Rossi, L. and P. J. Cullen, "On the fully numerical evaluation of the linear shape function times 3D Green's function on a plane triangle," IEEE Trans. Microwave Theory Tech., Vol. 47, 398-402, Apr. 1999.
doi:10.1109/22.754871

22. Khayat, M. A. and D. R. Wilton, "Numerical evaluation of singular and near-singular potential integrals," IEEE Trans. Antennas Propagat., Vol. 53, 3180-3190, Oct. 2005.

23. Peitgen, H. O., H. Jurgens, and D. Saupe, Chaos and Fractals, New Frontiers in Science, Springer-V erlag, 1992.

24. Puente, C., J. Romeu, R. Pous, and A. Cardama, "On the behavior of Sierpinski multiband fractal antenna," IEEE Trans. Antennas Propagat., Vol. 46, 517-524, Apr. 1998.
doi:10.1109/8.664115

25. Baliarda, C. P., C. B. Borau, M. N. Rodero, and J. Romeu, "An iterative model for fractal antennas: Application to the Sierpinski gasket antenna," IEEE Trans. Antennas Propagat., Vol. 48, 713-719, May 2000.
doi:10.1109/8.855489

26. Vinoy, K. J., J. K. Abraham, and V. K. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Trans. Antennas Propagat., Vol. 51, 2296-2303, Sept. 2003.
doi:10.1109/TAP.2003.816352

27. Vinoy, K. J., K. A. Jose, V. K. Varadan, and V. V. Varadan, "Hilbert curve fractal antenna: A small resonant antenna for VHF/UHF applications," Microwave and Optical Technology Letters, Vol. 29, 215-219, 2001.
doi:10.1002/mop.1136

28. Ataeiseresht, R., C. Ghobadi, and J. Nourinia, "A novel analysis of Minkowski fractal microstrip patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1115-1127, 2006.
doi:10.1163/156939306776930268