Vol. 13
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-03-04
Relativistic Laguerre Polynomials and Splash Pulses
By
Progress In Electromagnetics Research B, Vol. 13, 329-356, 2009
Abstract
New solutions of the homogeneous wave equation of the type usually referred to as relatively undistorted waves are presented. Such solutions relate to the so-called "splash modes", from which indeed they can be generated by applying the Laguerre polynomial operator. Accordingly, the solutions here presented resort to the relativistic Laguerre polynomials --- introduced about one decade ago within a purely mathematical context --- which in fact appear as modulating factor of the basic "splash mode" waveform. Similar solutions of the homogeneous spinor wave equation are also suggested.
Citation
Amalia Torre, "Relativistic Laguerre Polynomials and Splash Pulses," Progress In Electromagnetics Research B, Vol. 13, 329-356, 2009.
doi:10.2528/PIERB08122210
References

1. Brittingham, J. N., "Packetlike solutions of the homogeneous-wave equation," J. Appl. Phys., Vol. 54, 1179-1189, 1983.
doi:10.1063/1.332196

2. Kiselev, A. P., "Modulated Gaussian beams," Radiophys. Quantum Electron., Vol. 26, 755-761, 1983.
doi:10.1007/BF01034890

3. Belanger, P. A., "Packetlike solutions of the homogeneous-wave equation," JOSA A, Vol. 1, 723-724, 1984.
doi:10.1364/JOSAA.1.000723

4. Sezginer, A., "A general formulation of focus wave modes," J. Appl. Phys., Vol. 57, 678-683, 1985.
doi:10.1063/1.334712

5. Ziolkowski, R. W., "Exact solutions of the wave equation with complex source locations," J. Math. Phys., Vol. 26, 861-863, 1985.
doi:10.1063/1.526579

6. Ziolkowski, R. W., "Localized transmission of electromagnetic energy," Phys. Rev. A, Vol. 39, 2005-2033, 1989.
doi:10.1103/PhysRevA.39.2005

7. Ziolkowski, R. W., I. M. Besieris, and A. M. Shaarawi, "Localized wave representations of acoustic and electromagnetic radiation," Proc. IEEE, Vol. 79, 1371-1378, 1991.
doi:10.1109/5.104212

8. Bandres, M. A. and J. C. Gutierrez-Vega, "Cartesian beams," Opt. Lett., Vol. 32, 3459-3461, 2007.
doi:10.1364/OL.32.003459

9. Bandres, M. A. and J. C. Gutierrez-Vega, "Circular beams," Opt. Lett., Vol. 33, 177-179, 2008.
doi:10.1364/OL.33.000177

10. Torre, A., "A note on the general solution of the paraxial wave equation: A Lie algebra view ," J. Opt. A: Pure Appl. Opt., Vol. 10, 055006, 2008.
doi:10.1088/1464-4258/10/5/055006

11. Besieris, I. M., A. M. Shaarawi, and R. W. Ziolkowski, "A bidirectional traveling plane wave representation of exact solutions of the wave equation," J. Math. Phys., Vol. 30, 1254-1269, 1989.
doi:10.1063/1.528301

12. Bateman, H., The Mathematical Analysis of Electrical and Optical Wave-motion on the Basis of Maxwell’s Equations, Dover, New York, 1955.

13. Courant, R. and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Interscience, New York, 1962.

14. Hillion, P., "Electromagnetic inhomogeneous pulses," Journal of Electromagnetic Waves and Applications, Vol. 5, 959-969, 1991.

15. Hillion, P., "Nondispersive waves: Interpretation and causality," IEEE Trans. Ant. Propag., Vol. 40, 1031-1035, 1992.
doi:10.1109/8.166527

16. Hillion, P., "Generalized phases and nondispersive waves," Acta Appl. Math., Vol. 30, 35-45, 1993.
doi:10.1007/BF00993341

17. Kiselev, A. P. and M. V. Perel, "Highly localized solutions of the wave equations," J. Math. Phys., Vol. 41, 1934-1955, 2000.
doi:10.1063/1.533219

18. Kiselev, A. P., "Relatively undistorted waves. New examples," J. Math. Sci., Vol. 117, 3945-3946, 2003.
doi:10.1023/A:1024666808547

19. Kiselev, A. P., "Generalization of Bateman-Hillion progressive wave and Bessel-Gauss pulse solutions of the wave equation via a separation of variables," J. Phys. A: Math. Gen., Vol. 36, L345-L349, 2003.
doi:10.1088/0305-4470/36/23/103

20. Kiselev, A. P., "Relatively undistorted cylindrical waves, depending on three spatial variables," Math. Notes, Vol. 79, 587-588, 2006.
doi:10.1007/s11006-006-0066-y

21. Kiselev, A. P., "Localized light waves: Paraxial and exact solutions of the wave equation (a review)," Opt. & Spectr., Vol. 102, 603-622, 2007.
doi:10.1134/S0030400X07040200

22. Hillion, P., "Splash wave modes in homogeneous Maxwell's equations," Journal of Electromagnetic Waves and Applications, Vol. 2, 725-739, 1988.

23. Besieris, I. M., M. Abdel-Rahman, A. Shaarawi, and A. Chatzipetros, "Two fundamental representations of localized pulse solutions to the scalar wave equation," Prog. Electrom. Res., Vol. 19, 1-48, 1998.
doi:10.2528/PIER97072900

24. Hillion, P., "Spinor focus wave modes," J. Math. Phys., Vol. 28, 1743-1748, 1987.
doi:10.1063/1.527484

25. Shaarawi, A. M., M. A. Maged, I. M. Besieris, and E. Hashish, "Localized pulses exhibiting a missilelike slow decay," JOSA, Vol. 23, 2039-2052, 2006.
doi:10.1364/JOSAA.23.002039

26. Natalini, P., "The relativistic Laguerre polynomials," Rend. Matematica, Ser. VII, Vol. 16, 299-313, 1996.

27. Aldaya, V., J. Bisquert, and J. Navarro-Salas, "The quantum relativistic harmonic oscillator: generalized Hermite polynomials," Phys. Lett. A, Vol. 156, 381-385, 1991.
doi:10.1016/0375-9601(91)90711-G

28. Torre, A., W. A. B. Evans, O. El Gawhary, and S. Severini, "Relativisitic Hermite polynomials and Lorentz beams," J. Opt. A: Pure Appl. Opt., Vol. 10, 115007, 2008.
doi:10.1088/1464-4258/10/11/115007

29. Mourad, E. and H. Ismail, "Relativistic orthogonal polynomials are Jacobi polynomials," J. Phys. A: Math. Gen., Vol. 29, 3199-3202, 1996.
doi:10.1088/0305-4470/29/12/023

30. Volterra, V., "Sur les vibrations des corps elastiques isotropes," Acta Math., Vol. 18, 161-232, 1894.
doi:10.1007/BF02418279

31. Miller, W., Symmetry and Separation of Variables, Addison-Wesley, Reading, MA, 1977.

32. Hillion, P., "The Courant-Hilbert solution of the wave equation," J. Math. Phys., Vol. 33, 2749-2753, 1992.
doi:10.1063/1.529595

33. Erdelyi, A., W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Vols. 1 and 2, MacGraw-Hill, New York, London and Toronto, 1953.

34. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York, 1965.

35. Stratton, J. A., "Electromagnetic Theory," McGraw-Hill, 1941.

36. Essex, E. A., "Hertz vector potentials of electromagnetic theory," Amer. J. Phys., Vol. 54, 1099-1101, 1977.
doi:10.1119/1.10955

37. Hillion, P., "More on focus wave modes in Maxwell equations," J. Appl. Phys., Vol. 60, 2981-2982, 1986.
doi:10.1063/1.337773

38. Hillion, P., "The Bateman solutions of the spinor wave equation," Mod. Phys. Lett. A, Vol. 8, 2111-2115, 1993.
doi:10.1142/S0217732393001823

39. Wu, T. T., "Electromagnetic missiles," J. Appl. Phys., Vol. 57, 2370-2373, 1985.
doi:10.1063/1.335465

40. Shen, H. M and T. T.Wu, "The properties of the electromagnetic missile," J. Appl. Phys., Vol. 66, 4025-4034, 1989.
doi:10.1063/1.344011

41. Ziolkowski, R. W., I. M. Besieris, and A. M. Shaarawi, "Aperture realizations of exact solutions to homogeneous-wave equations," JOSA A, Vol. 10, 75-87, 1993.
doi:10.1364/JOSAA.10.000075

42. Abdel-Rahman, M., I. M. Besieris, and A. M. Shaarawi, "A comparative study on the reconstruction of localized pulses," Proc. IEEE Southeast Conf. (SOUTHEASTCON'97), 113-117, Blackburg, Virginia, April 1997. also at http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00598622.