Vol. 13
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-02-16
A Comparison of Genetic Algorithms, Particle Swarm Optimization and the Differential Evolution Method for the Design of Scannable Circular Antenna Arrays
By
Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009
Abstract
A comparison between different modern population based optimization methods applied to the design of scannable circular antenna arrays is presented in this paper. This design of scannable circular arrays considers the optimization of the amplitude and phase excitations across the antenna elements to operate with optimal performance in the whole azimuth plane (360ο). Simulation results for scannable circular arrays with the amplitude and phase excitation optimized by genetic algorithms, particle swarm optimization and the differential evolution method are provided. Furthermore, in order to set which design case could provide a better performance in terms of the side lobe level and the directivity, a comparative analysis of the performance of the optimized designs with the case of conventional progressive phase excitation is achieved. Simulation results show that differential evolution and particle swarm optimization have similar performances and both of them had better performance compared to genetic algorithms when all algorithms are allowed equal computation time.
Citation
Marco A. Panduro, Carlos A. Brizuela, Luz I. Balderas, and Diana A. Acosta, "A Comparison of Genetic Algorithms, Particle Swarm Optimization and the Differential Evolution Method for the Design of Scannable Circular Antenna Arrays," Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009.
doi:10.2528/PIERB09011308
References

1. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimisation by Genetic Algorithms, Wiley-Interscience, New York, 1999.

2. Haupt, R., "Thinned arrays using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 42, 993-999, 1994.
doi:10.1109/8.299602

3. Golberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Massachusetts, 1989.

4. Panduro, M. A., "Optimization of non-uniform linear phased array using genetic algorithms to provide maximum interference reduction in a wireless communication system," Journal of the Chinese Institute of Engineers JCIE, Vol. 29, No. 7, Special Issue: Communications, 1195-1201, 2006.

5. Panduro, M. A., "Design of coherently radiating structures in a linear array geometry using genetic algorithms," AEU International Journal of Electronics and Communications, Vol. 61, No. 8, 515-520, 2007.
doi:10.1016/j.aeue.2006.09.002

6. Vaitheeswaran, S. M., "Dual beam synthesis using element position perturbations and the G3-GA algorithm," Progress In Electromagnetics Research, PIER 87, 43-61, 2008.

7. Gurel, L. and O. Ergul, "Design and simulation of circular arrays of trapezoidal-tooth log-periodic antennas via genetic optimization," Progress In Electromagnetics Research, PIER 85, 243-260, 2008.

8. Li, F., X. Chen, and K. Huang, "Microwave imaging a buried object by the GA and using the S11 parameter," Progress In Electromagnetics Research, PIER 85, 289-302, 2008.

9. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of Genetic algorithm optimization of lenses," Progress In Electromagnetics Research, PIER 83, 335-352, 2008.

10. Xu, Z., H. Li, Q. Z. Liu, and J. Y. Li, "Pattern synthesis of conformal antenna array by the hybrid genetic algorithm," Progress In Electromagnetics Research, PIER 79, 75-90, 2008.

11. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proceedings of the IEEE International Conference Neural Networks, Vol. 4, 1942-1948, 1995.
doi:10.1109/ICNN.1995.488968

12. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, 397-407, 2004.
doi:10.1109/TAP.2004.823969

13. Clerc, M. and J. Kennedy, "The particle swarm-explosion, stability and convergence in a multidimensional complex space," IEEE Transactions on Evolutionary Computation, Vol. 6, 58-73, 2002.
doi:10.1109/4235.985692

14. Park, S. H., H. T. Kim, and K. T. Kim, "Stepped-frequency isar motion compensation using particle swarm optimization with an island model," Progress In Electromagnetics Research, PIER 85, 25-37, 2008.

15. Li, W. T., X. W. Shi, and Y. Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, PIER 82, 319-332, 2008.

16. Huang, C. H., C. C. Chiu, C. L. Li, and K. C. Chen, "Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by particle swarm optimization," Progress In Electromagnetics Research, PIER 82, 381-400, 2008.

17. Li, W. T., X. W. Shi, L. Xu, and Y. Q. Hei, "Improved GA and PSO culled hybrid algorithm for antenna array pattern synthesis," Progress In Electromagnetics Research, PIER 80, 461-476, 2008.

18. Chamaani, S., S. A. Mirta, M. Teshnehlab, M. A. Shooredeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, 353-366, 2008.
doi:10.2528/PIER07101702

19. Kurup, D., M. Himdi, and A. Rydberg, "Synthesis of uniform amplitude unequally spaced antenna arrays using the differential algorithm," IEEE Transactions on Antennas and Propagation, Vol. 51, 2210-2217, 2003.
doi:10.1109/TAP.2003.816361

20. Feortisov, V. and S. Janaqui, "Generalization of the strategies in differential evolution," Proceedings of the IEEE Conference Evolutionary Computation, 1996.

21. Parsopoulos, K. E., D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M. N. Vrahatis, "Vector evaluated differential evolution for multi-objective optimization," IEEE Congress on Evolutionary Computation, 19-23, 2004.

22. Song, Y. S., H. M. Kwon, and B. J. Min, "Computationally e±cient smart antennas for CDMA wireless communications," IEEE Transactions on Vehicular Technology, Vol. 50, 1613-1628, 2001.
doi:10.1109/25.966590

23. Du, K. L., "Pattern analysis of uniform circular array," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 4, 1125-1129, 2004.
doi:10.1109/TAP.2004.825802

24. Watanabe, F., N. Goto, A. Nagayama, and G. Yoshida, "A pattern synthesis of circular arrays by phase adjustment," IEEE Transactions on Antennas and Propagation, Vol. 28, No. 6, 857-863, 1980.
doi:10.1109/TAP.1980.1142424

25. Vescovo, R., "Constrained and unconstrained synthesis of array factor for circular arrays," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, 1405-1410, 1995.
doi:10.1109/8.475929

26. Goto, N. and Y. Tsunoda, "Sidelobe reduction of circular arrays with a constant excitation amplitude," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 6, 896-898, 1977.
doi:10.1109/TAP.1977.1141700

27. Panduro, M. A., A. L. Mendez, R. Dominguez, and G. Romero, "Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms," AEU International Journal of Electronics and Communications, Vol. 60, No. 10, 713-717, 2006.
doi:10.1016/j.aeue.2006.03.006

28. Su, T. and H. Ling, "Array beamforming in the presence of a mounting tower using genetic algorithms," EEE Transactions on Antennas and Propagation, Vol. 53, No. 6, 2011-2019, June 2005.
doi:10.1109/TAP.2005.848449

29. Balanis, C., Antenna Theory-analysis and Design, 2nd edition, Wiley, New York, 1997.

30. Kennedy, J. and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann, San Francisco, CA, 2001.

31. Eberhart, R. C. and Y. Shi, "Particle swarm optimization: Developments, applications and resources," Proceedings Congress Evolutionary Computation, 81-86, 2001.

32. Yang, S., A. Qing, and Y. B. Gan, "Synthesis of low side lobe antenna arrays using the differential evolution algorithm," IEEE Transactions on Antennas and Propagation Conference, 1-22, 2003.

33. Storn, R. and K. Price, "Minimizing the real functions of the ICEC'96 contest by differential evolution," Proceedings of the IEEE Conference Evolutionary Computation, 1996.

34. Eberhart, R. and Y. Shi, "Particle swarm optimization: Developments, applications and resources," Proc. Cong. Evol. Comput., Vol. 1, 81-86, 2001.

35. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Transactions on Antennas and Propagation, Vol. 55, 556-567, 2007.
doi:10.1109/TAP.2007.891552

36. Eberhart, R. and Y. Shi, "Evolving artificial neural network," Proc. Int. Conf. Neural Networks and Brain, PL5-PL13, 1998.

37. Rocha-Alicano, C., D. Covarrubias-Rosales, C. Brizuela-Rodriguez, and M. A. Panduro-Mendoza, "Differential evolution applied to sidelobe level reduction on a planar array," AEU International Journal of Electronics and Communications, Vol. 61, 286-290, 2007.
doi:10.1016/j.aeue.2006.05.008

38. Panduro, M. A., D. H. Covarrubias, C. A. Brizuela, and F. R. Marante, "A multi-objective approach in the linear antenna array design," AEU International Journal of Electronics and Communications, Vol. 59, No. 4, 205-212, 2005.
doi:10.1016/j.aeue.2004.11.017

39. Hollander, M. and D. A. Wolfe, Nonparametric Statistical Methods, John Wiley & Sons, Inc., Hoboken, NJ, 1999.