Vol. 25
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-09-10
Novel, Dual Band, Single and Double Negative Metamaterials: Nonconcentric Delta Loop Resonators
By
Progress In Electromagnetics Research B, Vol. 25, 225-239, 2010
Abstract
Novel, dual band, single and double negative metamaterials composed of nonconcentric and different sized delta loop resonators are presented. The proposed structures provide two distinct resonant frequencies in the microwave region. Effective medium parameters of these metamaterial structures are extracted using retrieval method to demonstrate the presence of the mentioned frequencies. In addition, equivalent circuit model for the individual magnetic resonator and wire strip is presented to give a clear explanation for the resonance behavior of the structures and to validate the proposed designs. The results show that the proposed metamaterials can be used as an alternative to the known counterparts especially when a dual band operation is needed at the frequency region of interest.
Citation
Cumali Sabah, "Novel, Dual Band, Single and Double Negative Metamaterials: Nonconcentric Delta Loop Resonators," Progress In Electromagnetics Research B, Vol. 25, 225-239, 2010.
doi:10.2528/PIERB10080302
References

1. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

2. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

3. Brown, J. and IEE Proceedings, "The design of metallic delay dielectrics,", Vol. 97, 45-48, 1950.

4. Rotman, W., "Plasma simulation by artificial dielectrics and parallel-plate media," IRE Transactions on Antennas and Propagation, Vol. 10, 82-95, 1962.
doi:10.1109/TAP.1962.1137809

5. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

6. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

7. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

8. www.wave-scattering.com.

9. Engheta, N., "Metamaterials with negative permittivity and permeability: Background, salient features, and new trends," 2003 IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 187-190, 2003.
doi:10.1109/MWSYM.2003.1210912

10. Sabah, C. Analysis, applications, and a novel design of double negative metamaterials, Ph.D. Thesis, University of Gaziantep, Gaziantep, Turkey, 2008.

11. Sabah, C. and S. Uckun, "Triangular split ring resonator and wire strip to form new metamaterial," Proceedings of 29th General Assembly of the International Union of Radio Science, Chicago, Illinois, USA, August 2008.

12. Sabah, C., A. O. Cakmak, E. Ozbay, and S. Uckun, "Transmission measurement of a new metamaterial sample with negative refraction index," 8th International Conference on Electrical, Transport and Optical Properties of Inhomogeneous Media (ETOPIM8), June 2009.

13. Sabah, C., A. O. Cakmak, E. Ozbay, and S. Uckun, "Transmission measurement of a new metamaterial sample with negative refraction index," Physica B: Condensed Matter, Vol. 405, 2955-2958, 2010.
doi:10.1016/j.physb.2010.01.012

14. Sabah, C., "Tunable metamaterial design composed of triangular split ring resonator and wire strip for s- and c-microwave bands," Progress In Electromagnetics Research B, Vol. 22, 341-357, 2010.
doi:10.2528/PIERB10051705

15. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Transaction on Antennas and Propagation, Vol. 51, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

16. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, 016608.1-016608.7, 2004.

17. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, 036617.1-036617.11, 2005.

18. Grover, F. W., Inductance Calculations, Dover Publication, Inc., 1946.

19. Terman, F. E., Radio Engineers' Handbook, McGraw Hill, 1950.

20. Clayton, R. P., Inductance: Loop and Partial, Wiley-IEEE Press, 2009.

21. Caloz, C. and T. Itoh, "Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip `LH line'," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 412-415, 2002.

22. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 2865-2873, 2007.
doi:10.1109/TMTT.2007.909611