Vol. 26
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-11-08
Simulation of Electromagnetic Diffusion in Anisotropic Media
By
Progress In Electromagnetics Research B, Vol. 26, 425-450, 2010
Abstract
I present an algorithm to simulate low-frequency electromagnetic propagation in an anisotropic earth, described by a general (non-diagonal) conductivity tensor. I solve the electric formulation by explicitly imposing an approximate form of the condition ∇·J = 0, where J is the current density vector, which includes the source and the induced current. The numerical algorithm consists of a fully spectral explicit scheme for solving linear, periodic parabolic equations. It is based on a Chebyshev expansion of the evolution operator and the Fourier and Chebyshev pseudospectral methods to compute the spatial derivatives. The latter is used to implement the air/ocean boundary conditions. The results of the simulations are verified by comparison to analytical solutions obtained from the Green function. Examples of the electromagnetic field generated by a source located at the bottom of the ocean illustrate the practical uses of the algorithm.
Citation
Jose M. Carcione, "Simulation of Electromagnetic Diffusion in Anisotropic Media," Progress In Electromagnetics Research B, Vol. 26, 425-450, 2010.
doi:10.2528/PIERB10100607
References

1. Abramowitz, M. and I. A. Stegun, Handbook of mathematical functions, Dover, 1972.

2. Adhidjaja, J. I., G. W. Hohmann, and M. L. Oristaglio, "Two-dimensional transient electromagnetic responses," Geophysics, Vol. 50, 2849-2861, 1985.
doi:10.1190/1.1441904

3. Al-Garni, M. and M. E. Everett, "The paradox of anisotropy in electromagnetic loop-loop responses over a uniaxial half-space," Geophysics, Vol. 68, 892-899, 2003.
doi:10.1190/1.1581041

4. Anderson, B., T. Barber, and S. Gianzero, "The effect of crossbed-ding anisotropy on induction tool response," Petrophysics, Vol. 42, 137-149, 2001.

5. Badea, E. A., M. E. Everett, G. A. Newman, and O. Biro, "Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials," Geophysics, Vol. 66, 786-799, 2001.
doi:10.1190/1.1444968

6. Carcione, J. M., "Ground penetrating radar: wave theory and numerical simulation in conducting anisotropic media," Geophysics, Vol. 61, 1664-1677, 1996.
doi:10.1190/1.1444085

7. Carcione, J. M., "A spectral numerical method for electromagnetic diffusion," Geophysics, Vol. 71, I1-I9, 2006.
doi:10.1190/1.2159050

8. Carcione, J. M., Wave Fields in Real Media. Theory and Numerical Simulation of Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, 2nd Ed., Elsevier, 2007.

9. Carcione, J. M. and M. Schoenberg, "3-D ground-penetrating radar simulation and plane wave theory," Geophysics, Vol. 65, 1527-1541, 2000.
doi:10.1190/1.1444841

10. Carslaw, H. S. and J. C. Jaeger, Conduction of Heat in Solids, Clarendom Press, 1984.

11. Davydycheva, S., V. Druskin, and T. Habashy, "An efficient finite-difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media," Geophysics, Vol. 68, 1525-1536, 2003.
doi:10.1190/1.1620626

12. Druskin, V. L. and L. A. Knizhnerman, "Spectral approach to solving three-dimensional Maxwells diffusion equations in the time and frequency domains," Radio Science, Vol. 29, 937-953, 1994.
doi:10.1029/94RS00747

13. Druskin, V. L., L. A. Knizhnerman, and P. Lee, "New spectral Lanczos decomposition method for induction modeling in arbitrary 3-D geometry," Geophysics, Vol. 64, 701-706, 1999.
doi:10.1190/1.1444579

14. Eidesmo, T., S. Ellingsrud, L. M. MacGregor, S. Constable, M. C. Sinha, S. Johansen, F. N. Kong, and H. Westerdahl, "Sea bed logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwaters areas," First Break, Vol. 20, 144-151, 2002.

15. Everett, M. E. and S. Constable, "Electric dipole fields over an anisotropic seafloor: Theory and application to the structure of 40Ma Pacific Ocean lithosphere," Geophys. J. Int., Vol. 136, 41-56, 1999.
doi:10.1046/j.1365-246X.1999.00725.x

16. Jiang, B.-N., J. Wu, and L. A. Povinelli, "The origin of spurious solutions in computational electromagnetics," Journal of Computational Physics, Vol. 125, 104-123, 1996.
doi:10.1006/jcph.1996.0082

17. Kong, F. N., S. E. Johnstad, T. Røsten, and H. Westerdahl, "A 2.5D finite-element-modeling difference method for marine CSEM modeling in stratified anisotropic media," Geophysics, Vol. 73, F9-F19, 2008.
doi:10.1190/1.2819691

18. Lee, K. H., G. Liu, and H. F. Morrison, "A new approach to modeling the electromagnetic response of conductive media," Geophysics, Vol. 54, 1180-1192, 1989.
doi:10.1190/1.1442753

19. Leppin, M., "Electromagnetic modeling of 3-D sources over 2-D inhomogeneities in the time domain," Geophysics, Vol. 57, 994-1003, 1992.
doi:10.1190/1.1443325

20. Maaø, F., "Fast finite-difference time-domain modeling for marine-subsurface electromagnetic problems," Geophysics, Vol. 72, A19-A23, 2007.
doi:10.1190/1.2434781

21. Mackie, R. L., T. R. Madden, and P. E. Wannamaker, "Three-dimensional magnetotelluric modeling using finite difference equations --- Theory and comparisons to integral equation solutions," Geophysics, Vol. 58, 215-226, 1993.
doi:10.1190/1.1443407

22. Mittet, R., "High-order finite-difference simulations of marine CSEM surveys using a correspondence principle for wave and diffusion fields," Geophysics, Vol. 75, F33-F50, 2010.
doi:10.1190/1.3278525

23. Negi, J. G. and P. D. Saraf, Anisotropy in Geoelectromagnetism, Elsevier, New York, 1989.

24. Olhoeft, G. R. and D. E. Capron, "Petrophysical causes of electromagnetic dispersion," Proceedings of the Fifth Internat. Conf. on Ground Penetrating Radar, 145-152, University of Waterloo, 1994.

25. Oristaglio, M. L. and G. W. Hohmann, "Diffusion of electromag-netic fields into a two-dimensional earth: A finite-difference approach," Geophysics, Vol. 49, 870-894, 1984.
doi:10.1190/1.1441733

26. Pellerin, L., J. M. Johnston, and G. W. Hohmann, "A numerical evaluation of electromagnetic methods in geothermal exploration," Geophysics, Vol. 61, 121-130, 1996.
doi:10.1190/1.1443931

27. Sasaki, Y. and M. A. Meju, "Useful characteristics of shallow and deep marine CSEM responses inferred from 3D finite-difference modeling," Geophysics, Vol. 74, F67-F76, 2009.
doi:10.1190/1.3168616

28. Smith, J. T., "Conservative modeling of 3-D electromagnetic fields: Part 2 --- Biconjugate gradient solution and an accelerator," Geophysics, Vol. 61, 1319-1324, 1996.
doi:10.1190/1.1444055

29. Stalnaker, J. L., "A finite element approach to the 3D CSEM modeling problem and applications to the study of the effect of target interaction and topography,", PHD Thesis, Texas A&M University, 2004.

30. Tal-Ezer, H., "Spectral methods in time for parabolic problems," SIAM Journal of Numerical Analysis, Vol. 26, 1-11, 1989.
doi:10.1137/0726001

31. Wang, T. and S. Fang, "3D electromagnetic anisotropy modeling using finite differences," Geophysics, Vol. 66, 1386-1398, 2001.
doi:10.1190/1.1486779

32. Wang, T. and G. W. Hohmann, "A finite-difference, time-domain solution for three-dimensional electromagnetic modeling," Geophysics, Vol. 58, 797-809, 1993.
doi:10.1190/1.1443465

33. Wang, T. and J. Signorelli, "Finite-difference modeling of electromagnetic tool response for logging while drilling," Geophysics, Vol. 69, 152-160, 2004.
doi:10.1190/1.1649383

34. Weiss, C. J. and S. Constable, "Mapping thin resistors and hydrocarbons with marine EM methods, Part II --- Modeling and analysis in 3D," Geophysics, Vol. 71, G321-G332, 2006.
doi:10.1190/1.2356908

35. Weiss, C. J. and G. A. Newman, "Electromagnetic induction in a fully 3D anisotropic earth," Geophysics, Vol. 67, 1104-1114, 2002.
doi:10.1190/1.1500371

36. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

37. Yin, C. and H. M. Maurer, "Electromagnetic induction in a layered earth with arbitrary anisotropy," Geophysics, Vol. 66, 1405-1416, 2001.
doi:10.1190/1.1487086

38. Yu, L., R. L. Evans, and R. N. Edwards, "Transient electromagnetic responses in seafloor with triaxial anisotropy," Geophys. J. Int., Vol. 129, 292-304, 1997.
doi:10.1111/j.1365-246X.1997.tb01582.x

39. Zhdanov, M., "Generalized effective-medium theory of induced polarization," Geophysics, Vol. 73, F197-F211, 2008.
doi:10.1190/1.2973462