Vol. 34
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-10-02
Raindrop Size Distribution Modeling for Radio Link Design Along the Eastern Coast of South Africa
By
Progress In Electromagnetics Research B, Vol. 34, 345-366, 2011
Abstract
A study of the raindrop size distribution along the eastern coast of South Africa (Durban) is presented. The Biweight kernel estimator based on distometer measurement is used to determine the best estimate of the measured raindrop size probability distribution function (pdf). The best kernel estimator, which results in the lowest integral square error (ISE), is used to measure the closeness of the estimated lognormal and gamma pdf of raindrop size to the measured raindrop size distribution. It is established that the optimised lognormal pdf slightly outperforms the optimised gamma pdf in terms of the mean ISE and the RMSE values, with mean ISE values of 0.026 for lognormal and 0.04 for gamma distributions, respectively, and corresponding mean RMSE values of 0.073 and 0.081, respectively. The method-of-moments gamma and lognormal distributions are observed to be worse estimators of the measured pdf than the two optimized distributions. The N(D) distributions using the optimised l gnormal and gamma distributions for the region are compared with those for different tropical regions, namely, India, Singapore, Nigeria, Indonesia, and Brazil. While the Indian lognormal N(D) model gives the highest peak for low raindrop sizes for all rain rates, Durban's gamma and lognormal models exhibit the widest raindrop size spread over all rain rates ranging from 1-120 mm/h. Finally, the specific attenuation due to rain using the Durban models are compared against the ITU-R models and actual measurements over a 19.5 GHz LOS link; the results indicate a need for further work involving both distrometer and radio link measurements for rain rates exceeding 30 mm/h in the eastern coast of South Africa.
Citation
Thomas Joachim Odhiambo Afullo, "Raindrop Size Distribution Modeling for Radio Link Design Along the Eastern Coast of South Africa," Progress In Electromagnetics Research B, Vol. 34, 345-366, 2011.
doi:10.2528/PIERB11082005
References

1. Adimula, I. A., G. O. Ajayi, and , "Variation in raindrop size distribution and specific attenuation due to rain in Nigeria," Ann. Telecommun., Vol. 51, No. 1--2, 87-93, 1996.

2. Afullo, , T. J. and P. K. Odedina, "Effective earth radius factor measurement and modeling for radio link design in Botswana," SAIEE Res. J., Vol. 99, No. 3, 77-86, 2008.

3. Ajayi, , G. O. and R. L. Olsen, "Modeling of a tropical raindrop size distribution for microwave and millimeter wave applications," Radio Sci. J., Vol. 20, No. 20, 193-202, 1985.
doi:10.1029/RS020i002p00193

4. Ajayi, , G. O., S. Feng, S. M. Radicella, and B. M. Reddy, Handbook on Radiopropagation Related to Satellite Communications in Tropical and Subtropical Countries, 2-14, ICTP Press, , Trieste, 1996.

5. Best, A. C., "Empirical formulae for the terminal velocity of waterdrops falling through the atmosphere," Quart. J. Roy Met. Soc., Vol. 76, 302-311, 1950.
doi:10.1002/qj.49707632905

6. Cerro, , C., B. Codina, J. Bech, and J. Lorente, "Modeling raindrop size distribution and Z(R) relations in the western Mediterranean area," Journal of Applied Meteorology, Vol. 36, No. 11, 1470-1479, November 1997.
doi:10.1175/1520-0450(1997)036<1470:MRSDAZ>2.0.CO;2

7. Crane, , R. K., "The rain range experiment --- propagation through a simulated rain environment," IEEE Trans. Antennas & Propagation, Vol. 22, No. 2, 321-328, March 1974.
doi:10.1109/TAP.1974.1140763

8. Distromet System, The Joss-Waldvogel Distrometer Handbook,, Basel, Switzerland, 2000.

9. Fashuyi, , M. O., T. J. Afullo, and , "Rain attenuation prediction and modeling for line-of-sight Links on terrestrial paths in South Africa ," Radio Sci. J.,, No. RS5006, 2007.
doi:10.1029/2007RS003618

10. Fiser, , O., M. Schonhuber, and P. Presice, "First results of DSD measurement by videodistrometer in the Czech Republic in 1998--1999," Stud. Geophys. Geod. , Vol. 46, 485-505, 2002.
doi:10.1023/A:1019591002211

11. "Geppert: The Lognormal Distribution, Engr 323 Notes,", August 2011.
doi:http://www.coursehero.com/¯le/1763221/lognorm/

12. "Specific rain attenuation model for rain for use in prediction models," Recommend. 838-3, ITU-R P Series, 2005.

13. Kerr, , D. E., Propagation of Short Radio Waves, MIT Radiation laboratories Series, McGraw-Hill Book Company, 1951.

14. Kumar, , L. S., Y. H. Lee, and J. T. Ong, "Truncated gamma drop size distribution models for rain attenuation in Singapore,", Vol. 58, No. 4, 1325-1335, April 2010.

15. Maitra, A., "Rain attenuation modelling from measurements of rain drop size distribution in the Indian region," IEEE Ant. & Prop. Letters, Vol. 3, 180-181, 2004.
doi:10.1109/LAWP.2004.833979

16. Marshall, , J. S., W. M. Palmer, and , "The distribution of raindrops with size," J. Meteor., Vol. 5, 165-166, 1948.
doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2

17. Marzuki, M., T. Kozu, T. Shimomai, W. L. Randeu, H. Hashiguchi, and Y. Shibagaki, "Diurnal variation of rain attenuation obtained from measurement of raindrop size distribution in equatorial Indonesia ," IEEE Trans. Ant. & Prop., Vol. 57, No. 9, 1191-1196, April 2009.
doi:10.1109/TAP.2009.2015812

18. Mulangu, , C. T. and T. J. O. Afullo, "Variability of the propagation coe±cients due to rain for microwave links in Southern Africa," Radio Sci. J., No. RS3006, 2009.
doi:10.1029/2008RS003912

19. Odedina, M. O. and T. J. Afullo, "Determination of rain attenuation from electromagnetic scattering by spherical raindrops: Theory and experiment," Radio Sci. J., No. RS1003, January 2010.
doi:10.1029/2009RS004192

20. Olsen, , R. L., D. V. Rogers, and D. B. Hodge, "The aRb relation in the calculation of rain attenuation," IEEE Trans. Antennas Propag., Vol. 26, No. 2, 547-556, 1978.
doi:10.1109/TAP.1978.1141845

21. Ong, J. T. and Y. Y. Shan, "Raindrop size distribution models for Singapore | comparison with results from different regions," Proc. 10th Intl. Conf. on Ant. & Prop., Vol. 436, 2.281-2.285, April 1997.

22. Sayama, , S., M. Sekine, and , "Influence of raindrop size distribution on the di®erential reflectivity up to submillimeter wavelength of 0.96 mm," Int. J. Infrared & Millimetric Waves, Vol. 23, No. 5, 775-784, May 2002.
doi:10.1023/A:1015770705113

23. Silverman, , B. W., Density Estimation for Statistics and Data Analysis, Chapman & Hall, ISBN 0-412-24620-1, 1990.

24. Tenorio, , R. S, M. C. da Silva Moraes, and L. C. B. Molion, "Raindrop size distribution over north-eastern coast of Brazil," 11th URSI Open Symposium on Radio Ware Propagation & Remote Sensing , October 2007.

25. Timothy, K. I, J. T. Ong, and E. B. L. Choo, "Raindrop size distribution using method of moments for terrestrial and satellite communication applications in Singapore ," IEEE Trans. Ant. & Prop., Vol. 50, No. 10, 1420-1424, 2002.
doi:10.1109/TAP.2002.802091

26. Ulbrich, , C. W., "Natural variations in the analytical form of the raindrop size distribution," Journ. Climate & Applied Meteorology, Vol. 22, 1764-1775, 1983.
doi:10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2

27. Wang, M. A., J. Din, and , "Comparison of the raindrop size distribution in tropical region," Proceedings of 2004 RF and Microwave Conference, October 2004.

28. Owolawi, , P. A., "Rainfall rate probability density evaluation and mapping for the estimation of rain attenuation in South Africa and surrounding islands ," Progress In Electromagnetics Research, Vol. 112, 155-181, 2011.

29. Kumar, , L. S., Y. H. Lee, J. X. Yeo, and J. T. Ong, "Tropical rain classi¯cation and estimation of rain from Z-R (reflectivity - rain rate) relationships," Progress in Electromagnetics Research B, Vol. 32, 107-127, 2011.
doi:10.2528/PIERB11040402