Vol. 35
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-11-01
Aerial Degrees of Freedom of Parasitic Arrays for Single RF Front-End MIMO Transceivers
By
Progress In Electromagnetics Research B, Vol. 35, 287-306, 2011
Abstract
The beamspace domain of parasitic antenna arrays is explored in this paper, providing the aerial degrees of freedom available for use in Multiple Input-Multiple Output (MIMO) systems. The beamspace representation allows for the design of an alternative MIMO architecture based on single radio-frequency (RF) chains, and facilitates the inclusion of MIMO transceivers in devices with strict size limitations. A three dimensional orthogonal expansion is performed on the beamspace domain providing the basis patterns used for mapping of the transmitted symbols and for sampling at the receiver. The expansion is based on the Gram-Schmidt orthonormalization procedure and can be generalized for any parasitic antenna array. The multiplexing capability of ESPAR antennas is presented as a means for supporting future performance demanding communication systems. Performance evaluation results are illustrated in detail.
Citation
Vlasis Barousis, and Athanasios G. Kanatas, "Aerial Degrees of Freedom of Parasitic Arrays for Single RF Front-End MIMO Transceivers," Progress In Electromagnetics Research B, Vol. 35, 287-306, 2011.
doi:10.2528/PIERB11092904
References

1. Sibille, A., C. Oestges, and A. Zanella, MIMO: From Theory to Implementation, Vol. 10, Academic Press, 2011.

2. Chung, J.-Y., T. Yang, and J. Lee, "Low correlation MIMO antennas with negative group delay," Progress In Electromagnetics Research C, Vol. 22, 151-163, 2011.
doi:10.2528/PIERC11051007        Google Scholar

3. Wallace, J. W. and M. A. Jensen, "Mutual coupling in MIMO wireless systems: A rigorous network theory analysis," IEEE Transactions on Wireless Communications, Vol. 3, No. 4, 1317-1325, 2004.
doi:10.1109/TWC.2004.830854        Google Scholar

4. Waldschmidt, C., S. Schulteis, and W. Wiesbeck, "Complete RF system model for analysis of compact MIMO arrays," IEEE Transactions on Vehicular Technology, Vol. 53, No. 3, 579-586, May 2004.
doi:10.1109/TVT.2004.825788        Google Scholar

5. Tsen, W.-F. and H.-J. Li, "Optimal impedance matching for capacity maximization of MIMO systems with coupled antennas and noisy amplifiers," Progress In Electromagnetics Research C, Vol. 15, 23-36, 2010.
doi:10.2528/PIERC10050301        Google Scholar

6. Geyi, W., "Multi-antenna information theory," Progress In Electromagnetics Research, Vol. 75, 11-50, 2007.        Google Scholar

7. Kalis, A., A. G. Kanatas, and C. Papadias, "A novel approach to MIMO transmission using a single RF front end," IEEE Journal on Selected Areas in Communications, Vol. 26, No. 6, 972-980, 2008.
doi:10.1109/JSAC.2008.080813        Google Scholar

8. Bains, R. and R. R. Müller, "Using parasitic elements for implementing the rotating antenna for MIMO receivers," IEEE Trans. on Wireless Communications, Vol. 7, No. 11, 4522-4533, November 2008.
doi:10.1109/T-WC.2008.060808        Google Scholar

9. Alrabadi, O., C. Papadias, A. Kalis, and R. Prasad, "A universal encoding scheme for MIMO transmission using a single active element for PSK modulation schemes," IEEE Trans. on Wireless Communications, Vol. 8, No. 10, 5133-5142, October 2009.
doi:10.1109/TWC.2009.080824        Google Scholar

10. Barousis, V., A. G. Kanatas, and A. Kalis, "Beamspace domain analysis of single RF front-end MIMO systems," IEEE Trans. on Vehicular Technology, Vol. 60, No. 3, 1195-1199, March 2011.
doi:10.1109/TVT.2011.2112383        Google Scholar

11. Alrabadi, O. N., C. Divarathne, P. Tragas, A. Kalis, N. Marchetti, C. B. Papadias, and R. Prasad, "Spatial multiplexing with a single radio: Proof-of-concept experiments in an indoor environment with a 2.6-GHz prototype," IEEE Communications Letters, Vol. 15, No. 2, 178-180, February 2011.
doi:10.1109/LCOMM.2011.121310.102119        Google Scholar

12. Adams, A. T. and D. E. Warren, "Dipole plus parasitic element," IEEE Trans. on Antennas and Propagation, Vol. 19, 536-537, July 1971.        Google Scholar

13. Harrington, R. F., "Reactively controlled directive arrays," IEEE Trans. on Antennas and Propagation, Vol. 26, No. 3, 390-395, May 1978.
doi:10.1109/TAP.1978.1141852        Google Scholar

14. Scott, N., M. O. Leonard-Taylor, and R. G. Vaughan, "Diversity gain from a single-port adaptive antenna using switched parasitic elements illustrated with a wire and monopole prototype," IEEE Trans. on Antennas and Propagation, Vol. 47, No. 6, 1066-1070, June 1999.
doi:10.1109/8.777133        Google Scholar

15. Ohira, T. and K. Gyoda, "Electronically steerable passive array radiator antennas for low-cost analog adaptive beamforming," IEEE Int. Conf. Phased Array Syst. & Tech., 101-104, May 2000.        Google Scholar

16. Iigusa, K. and T. Ohira, "A simple and accurate mathematical model of electronically steerable pa-rasitic array radiator antennas," First IEEE Consumer Communications and Networking Conference, CCNC 2004, 312-315, Jane 5--8, 2004.        Google Scholar

17. Vaughan, R., "Switched parasitic elements for antenna diversity," IEEE Trans. on Antennas and Propagation, Vol. 47, No. 2, February 1999.
doi:10.1109/8.761082        Google Scholar

18. Barousis, V., A. G. Kanatas, A. Kalis, and C. Papadias, "A stochastic beamforming algorithm for ESPAR antennas," IEEE Antennas and Wireless Prop. Letters, Vol. 7, 745-748, 2008.
doi:10.1109/LAWP.2008.2004783        Google Scholar

19. Sun, C., A. Hirata, T. Ohira, and N. C. Karmakar, "Fast beamforming of electronically steerable parasitic array radiator antennas: Theory and experiment," IEEE Trans. on Antennas and Propagation, Vol. 52, No. 7, July 2004.        Google Scholar

20. Wennstrom, M. and T. Svantesson, "An antenna solution for MIMO channels: The switched parasitic antenna," 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2001, Vol. 1, A-159--A-163, September 2001.

21. Kalis, A., A. G. Kanatas, M. Carras, and A. G. Constantinides, "On the performance of MIMO systems in the wavevector domain," IST Mobile & Wireless Comm Summit, Mykonos, Greece, June 5--8, 2006.

22. Sayeed, A. M., "Deconstructing multiantenna fading channels," IEEE Trans. on Signal Processing, Vol. 50, No. 10, 2563-2579, October 2002.
doi:10.1109/TSP.2002.803324        Google Scholar

23. Tse, D. and P. Viswanath, Fundamentals of Wireless Communication, Vol. 7, Cambridge University Press, 2005.

24. Migliore, M. D., "On the role of the number of degrees of freedom of the field in MIMO channels," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 2, February 2006.
doi:10.1109/TAP.2005.863108        Google Scholar

25. Poon, A. S. Y., R. W. Brodersen, and D. N. C. Tse, "Degrees of freedom in multiple-antenna channels: A signal space approach," IEEE Trans. on IT, Vol. 51, No. 2, February 2005.
doi:10.1109/TIT.2004.840892        Google Scholar

26. Bucci, O. M. and G. Franceschetti, "On the degrees of freedom of scettered fields," IEEE Trans. on Antennas and Propagation, Vol. 37, No. 7, July 1989.        Google Scholar

27. Migliore, M. D., "On electromagnetics and information theory," IEEE Trans. on Antennas and Propagation, Vol. 56, No. 10, October 2008.        Google Scholar

28. Miller, D. A., "Communicating with waves between volumes: Evaluating orthogonal spatial channels and limits on coupling strengths," Applied Optics, Vol. 39, No. 11, April 2000.        Google Scholar

29. Proakis, J. G., Digital Communications, 4th Ed., Vol. 4, 163, McGraw-Hill International Edition, 2000.

30. Van Trees, H. L., Optimum Array Processing, John Wiley & Sons, 2002.
doi:10.1002/0471221104

31. Balanis, C., Antenna Theory, Analysis and Design, 3rd Ed., Wiley, 2005.

32. Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen, "A stochastic MIMO radio channel model with experimental validation," IEEE Journal on Selected Areas in Communications, Vol. 20, No. 6, 1211-1226, August 2002.
doi:10.1109/JSAC.2002.801223        Google Scholar

33. Hu, Z., S. Sfar, and R. S. Blum, "Receive antenna selection for closely-spaced antennas with mutual coupling," IEEE Trans. on Wireless Communications, Vol. 9, No. 2, February 2010.        Google Scholar

34. Mbonjo, H. N. M., J. Hansen, and V. Hansen, "MIMO capacity and antenna array design," IEEE Global Telecommunications Conference, Globecom, 2004.

35. Teal, P. D., T. D. Abhayapala, and R. A. Kennedy, "Spatial correlation for general distributions of scatterers," IEEE Signal Processing Letters, Vol. 9, No. 10, October 2002.        Google Scholar

36. Olver, F. W. J., D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions, National Institute of Standards and Technology (NIST) and Cambridge University Press, 2010.

37. Abouda, A. A. and S. G. Haggman, "Effect of mutual coupling on capacity of MIMO wireless channels in high SNR scenario," Progress In Electromagnetics Research, Vol. 65, 27-40, 2006.
doi:10.2528/PIER06072803        Google Scholar

38. Glazunov, A. A., M. Gustafsson, A. F. Molisch, F. Tufvesson, and G. Kristensson, "Spherical vector wave expansion of gaussian electromagnetic fields for antenna-channel interaction analysis," IEEE Trans. on Antennas & Propagation, Vol. 57, No. 7, July 2009.        Google Scholar

39. Glazunov, A. A. and J. Zhang, "Some examples of uncorrelated radiation patterns for MIMO applications," PIERS Proceedings, 598-602, Marakkesh, Morocco, March 20--23, 2011.