Vol. 41
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-06-11
ISAR Imaging of Non-Uniform Rotation Targets with Limited Pulses via Compressed Sensing
By
Progress In Electromagnetics Research B, Vol. 41, 285-305, 2012
Abstract
This research introduces compressed sensing (CS) principle into inverse synthetic aperture radar (ISAR) imaging of non-uniform rotation targets, and high azimuth resolution can be achieved with limited number of pulses. Firstly, the sparsity of the echoed signal of radar targets with non-uniform rotation in certain matching Fourier domain is analyzed. Then the restricted isometry property (RIP) and incoherence of partial matching Fourier matrices are checked, following which an ISAR imaging method based on CS for both random sparse aperture and short aperture cases is proposed. In particular, considering the dependence of the sparse dictionary on the relative rotation parameter, a parameter estimation method by the optimal search in fractional Fourier domain is presented. Simulation experiments verify the effectiveness as well as superiority of the proposed imaging method over traditional methods in terms of imaging performance.
Citation
Jihong Liu, Xiang Li, Shaokun Xu, and Zhaowen Zhuang, "ISAR Imaging of Non-Uniform Rotation Targets with Limited Pulses via Compressed Sensing," Progress In Electromagnetics Research B, Vol. 41, 285-305, 2012.
doi:10.2528/PIERB12041715
References

1. Bao, Z., M. D. Xing, and T. Wang, Radar Imaging Technique, Publishing House of Electronics Industry, 2006.

2. Donoho, D. L., "Compressed sensing," IEEE Trans. Inform. Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582        Google Scholar

3. Candes, E. and M. Wakin, "An introduction to compressive sampling," IEEE Sig. Proc. Mag., Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731        Google Scholar

4. Ender, J. H. G., "On compressive sensing applied to radar," Signal Processing, Vol. 90, No. 5, 1402-1414, 2010.
doi:10.1016/j.sigpro.2009.11.009        Google Scholar

5. Potter, L. C., E. Ertin, J. T. Parker, and M. Cetin, "Sparsity and compressed sensing in radar imaging," Proceedings of the IEEE, Vol. 98, No. 62, 1006-1020, 2010.
doi:10.1109/JPROC.2009.2037526        Google Scholar

6. Wei, S.-J., X.-L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.        Google Scholar

7. Wei, S.-J., X.-L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805        Google Scholar

8. Chen, J., J. Gao, Y. Zhu, W. Yang, and P. Wang, "A novel image formation algorithm for high-resolution wide-swath spaceborne SAR using compressed sensing on azimuth displacement phase center antenna," Progress In Electromagnetics Research, Vol. 125, 2012.        Google Scholar

9. Li, J., S. Zhang, and J. Chang, "Applications of compressed sensing for multiple transmitters multiple azimuth beams SAR imaging," Progress In Electromagnetics Research, Vol. 127, 259-275, 2012.
doi:10.2528/PIER12021307        Google Scholar

10. Zhang, L., M. D. Xing, C. W. Qiu, J. Li, and Z. Bao, "Achieving higher resolution ISAR imaging with limited pulses via compressed sampling," IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 3, 567-571, 2009.
doi:10.1109/LGRS.2009.2021584        Google Scholar

11. Zhang, L., M. D. Xing, C. W. Qiu, et al. "Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 10, 3824-3838, 2010.
doi:10.1109/TGRS.2010.2048575        Google Scholar

12. Rao, W., G. Li, X. Q. Wang, and X.-G. Xia, "ISAR imaging of maneuvering targets with missing data via matching pursuit," Proceedings of IEEE Radar Conference, 124-128, 2011.        Google Scholar

13. Quan, Y. H., L. Zhang, R. Guo, M. D. Xing, Z. Bao, "Generating dense and super-resolution ISAR image by combining bandwidth extrapolation and compressive sensing," SCIENCE CHINA Information Sciences, Vol. 54, No. 10, 2158-2169, 2011.
doi:10.1007/s11432-011-4298-4        Google Scholar

14. Zhao, G. H., Z. Y. Wang, Q. Wang, G. M. Shi, and F. F. Shen, "Robust ISAR imaging based on compressive sensing from noisy measurements," Signal Processing, Vol. 92, No. 1, 120-129, 2012.
doi:10.1016/j.sigpro.2011.06.011        Google Scholar

15. Li, J., M. D. Xing, and S. J. Wu, "Application of compressed sensing in sparse aperture imaging of radar," Proceedings of 2nd Asian-Paci¯c Conf. on Synthetic Aperture Radar (APSAR'09), 1119-1119, Oct. 2009.        Google Scholar

16. Raghu, G. R. and F. Masoud, "ISAR imaging in sea clutter via compressive sensing," International Conference on Waveform Diversity and Design Conference (WDD), 200-205, Aug. 2010.        Google Scholar

17. Raghu, G. R., C. C. Victor, and L. Ronald, "A greedy approach for sparse angular aperture radar," Proceedings of IEEE Radar Conference, 673-677, 2010.        Google Scholar

18. Fu, Y. W., J. M. Hu, and X. Li, "ISAR imaging of uniform accelerative rotating targets based on chirp-Fourier transform," Systems Engineering and Electronics, Vol. 33, No. 12, 2608-2612, 2011.        Google Scholar

19. Yin, Z. P., "Applications of fractional Fourier transform to inverse synthetic aperture radar imaging processing,", Ph.D. thesis, University of Science and Technology of China, Hefei, 2008.        Google Scholar

20. Liu, A. F., X. H. Zhu, J. H. Lu, and Z. Liu, "Imaging in inverse synthetic aperture radar (ISAR) based on discrete matching Fourier transform," Acta Armamentarii, Vol. 25, No. 4, 458-462, 2004.        Google Scholar

21. Huang, Y. J., M. Cao, Y. W. Fu, Y. N. Li, and W. D. Jiang, "ISAR imaging of equably accelerative rotating targets based on matching Fourier transform," Signal Processing, Vol. 25, No. 6, 864-867, 2009.        Google Scholar

22. Cao, M., "Research on high resolution radar imaging technology for space targets,", Ph.D. thesis, National University of Defense Technology, Changsha, 2009.        Google Scholar

23. Liu, J. H., H., X. Li, Y. L. Qin, and Z. W. Zhuang, "ISAR imaging of non-uniform rotation targets via compressed sensing based on sparsity in matching fourier domain," 1st International Workshop on Compressed Sensing applied to Radar, May 2012.        Google Scholar

24. Wang, S. L., S. G. Li, J. L. Ni, and G. Y. Zhang, "A new transform --- Match Fourier transform," Acta Electronica Sinica, Vol. 29, No. 3, 403-405, 2001.        Google Scholar

25. Wang, S. L., "A new method for radar signal processing-matched Fourier transform,", Ph.D. thesis, Xidian University, Xi'an, 2003.        Google Scholar

26. Applebaum, L., S. Howard, S. Searle, and R. Calderbank, "Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery," Applied and Computational Harmonic Analysis, Vol. 26, No. 2, 283-290, 2009.        Google Scholar

27. Patel, V. M., G. R. Easley, D. M. Healy, and R. Chellappa, "Compressed synthetic aperture radar," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 2, 244-254, 2010.        Google Scholar

28. Duarte, M. F., Y. C. Eldar, and R. Chellappa, "Structured compressed sensing: From theory to applications," IEEE Trans. Signal Process., Vol. 59, No. 9, 4053-4085, 2011.        Google Scholar

29. Saxena, R. and K. Singh, "Fractional Fourier transform: A novel tool for signal processing," J. Indian Inst. Sci., Vol. 85, 11-26, 2005.        Google Scholar

30. Gerald, C. F. and P. O. Wheatley, Applied Numerical Analysis, 7th Ed., Pearson/Addison-Wesley, 2004.

31. Mohimani, H., M. Babaie-Zadeh, and C. Jutten, "A fast approach for overcomplete sparse decomposition based on smoothed l0 norm," IEEE Trans. Signal Process., Vol. 57, No. 1, 289-301, 2009.        Google Scholar