1. Bao, Z., M. D. Xing, and T. Wang, Radar Imaging Technique, Publishing House of Electronics Industry, 2006.
2. Donoho, D. L., "Compressed sensing," IEEE Trans. Inform. Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582 Google Scholar
3. Candes, E. and M. Wakin, "An introduction to compressive sampling," IEEE Sig. Proc. Mag., Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731 Google Scholar
4. Ender, J. H. G., "On compressive sensing applied to radar," Signal Processing, Vol. 90, No. 5, 1402-1414, 2010.
doi:10.1016/j.sigpro.2009.11.009 Google Scholar
5. Potter, L. C., E. Ertin, J. T. Parker, and M. Cetin, "Sparsity and compressed sensing in radar imaging," Proceedings of the IEEE, Vol. 98, No. 62, 1006-1020, 2010.
doi:10.1109/JPROC.2009.2037526 Google Scholar
6. Wei, S.-J., X.-L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011. Google Scholar
7. Wei, S.-J., X.-L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805 Google Scholar
8. Chen, J., J. Gao, Y. Zhu, W. Yang, and P. Wang, "A novel image formation algorithm for high-resolution wide-swath spaceborne SAR using compressed sensing on azimuth displacement phase center antenna," Progress In Electromagnetics Research, Vol. 125, 2012. Google Scholar
9. Li, J., S. Zhang, and J. Chang, "Applications of compressed sensing for multiple transmitters multiple azimuth beams SAR imaging," Progress In Electromagnetics Research, Vol. 127, 259-275, 2012.
doi:10.2528/PIER12021307 Google Scholar
10. Zhang, L., M. D. Xing, C. W. Qiu, J. Li, and Z. Bao, "Achieving higher resolution ISAR imaging with limited pulses via compressed sampling," IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 3, 567-571, 2009.
doi:10.1109/LGRS.2009.2021584 Google Scholar
11. Zhang, L., M. D. Xing, C. W. Qiu, et al. "Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 10, 3824-3838, 2010.
doi:10.1109/TGRS.2010.2048575 Google Scholar
12. Rao, W., G. Li, X. Q. Wang, and X.-G. Xia, "ISAR imaging of maneuvering targets with missing data via matching pursuit," Proceedings of IEEE Radar Conference, 124-128, 2011. Google Scholar
13. Quan, Y. H., L. Zhang, R. Guo, M. D. Xing, Z. Bao, "Generating dense and super-resolution ISAR image by combining bandwidth extrapolation and compressive sensing," SCIENCE CHINA Information Sciences, Vol. 54, No. 10, 2158-2169, 2011.
doi:10.1007/s11432-011-4298-4 Google Scholar
14. Zhao, G. H., Z. Y. Wang, Q. Wang, G. M. Shi, and F. F. Shen, "Robust ISAR imaging based on compressive sensing from noisy measurements," Signal Processing, Vol. 92, No. 1, 120-129, 2012.
doi:10.1016/j.sigpro.2011.06.011 Google Scholar
15. Li, J., M. D. Xing, and S. J. Wu, "Application of compressed sensing in sparse aperture imaging of radar," Proceedings of 2nd Asian-Paci¯c Conf. on Synthetic Aperture Radar (APSAR'09), 1119-1119, Oct. 2009. Google Scholar
16. Raghu, G. R. and F. Masoud, "ISAR imaging in sea clutter via compressive sensing," International Conference on Waveform Diversity and Design Conference (WDD), 200-205, Aug. 2010. Google Scholar
17. Raghu, G. R., C. C. Victor, and L. Ronald, "A greedy approach for sparse angular aperture radar," Proceedings of IEEE Radar Conference, 673-677, 2010. Google Scholar
18. Fu, Y. W., J. M. Hu, and X. Li, "ISAR imaging of uniform accelerative rotating targets based on chirp-Fourier transform," Systems Engineering and Electronics, Vol. 33, No. 12, 2608-2612, 2011. Google Scholar
19. Yin, Z. P., "Applications of fractional Fourier transform to inverse synthetic aperture radar imaging processing,", Ph.D. thesis, University of Science and Technology of China, Hefei, 2008. Google Scholar
20. Liu, A. F., X. H. Zhu, J. H. Lu, and Z. Liu, "Imaging in inverse synthetic aperture radar (ISAR) based on discrete matching Fourier transform," Acta Armamentarii, Vol. 25, No. 4, 458-462, 2004. Google Scholar
21. Huang, Y. J., M. Cao, Y. W. Fu, Y. N. Li, and W. D. Jiang, "ISAR imaging of equably accelerative rotating targets based on matching Fourier transform," Signal Processing, Vol. 25, No. 6, 864-867, 2009. Google Scholar
22. Cao, M., "Research on high resolution radar imaging technology for space targets,", Ph.D. thesis, National University of Defense Technology, Changsha, 2009. Google Scholar
23. Liu, J. H., H., X. Li, Y. L. Qin, and Z. W. Zhuang, "ISAR imaging of non-uniform rotation targets via compressed sensing based on sparsity in matching fourier domain," 1st International Workshop on Compressed Sensing applied to Radar, May 2012. Google Scholar
24. Wang, S. L., S. G. Li, J. L. Ni, and G. Y. Zhang, "A new transform --- Match Fourier transform," Acta Electronica Sinica, Vol. 29, No. 3, 403-405, 2001. Google Scholar
25. Wang, S. L., "A new method for radar signal processing-matched Fourier transform,", Ph.D. thesis, Xidian University, Xi'an, 2003. Google Scholar
26. Applebaum, L., S. Howard, S. Searle, and R. Calderbank, "Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery," Applied and Computational Harmonic Analysis, Vol. 26, No. 2, 283-290, 2009. Google Scholar
27. Patel, V. M., G. R. Easley, D. M. Healy, and R. Chellappa, "Compressed synthetic aperture radar," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 2, 244-254, 2010. Google Scholar
28. Duarte, M. F., Y. C. Eldar, and R. Chellappa, "Structured compressed sensing: From theory to applications," IEEE Trans. Signal Process., Vol. 59, No. 9, 4053-4085, 2011. Google Scholar
29. Saxena, R. and K. Singh, "Fractional Fourier transform: A novel tool for signal processing," J. Indian Inst. Sci., Vol. 85, 11-26, 2005. Google Scholar
30. Gerald, C. F. and P. O. Wheatley, Applied Numerical Analysis, 7th Ed., Pearson/Addison-Wesley, 2004.
31. Mohimani, H., M. Babaie-Zadeh, and C. Jutten, "A fast approach for overcomplete sparse decomposition based on smoothed l0 norm," IEEE Trans. Signal Process., Vol. 57, No. 1, 289-301, 2009. Google Scholar