Vol. 43
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-08-22
A Comparison of the Performance of Cylindrical Lens Reflectors and Stepped-Indexed Cylindrical Luneburg Lens Reflectors: Simpler Is Better?
By
Progress In Electromagnetics Research B, Vol. 43, 109-127, 2012
Abstract
This paper studies the characteristics of a constant-K lens when considered as a possible substitute for a Luneburg lens in a reflector. The competitiveness of the substitute lens is investigated in its 2D analogue, by comparing the backscattering radar cross section for the range of D/λ ∈ (0, 200). The performance of cylindrical reflectors with either a constant-K lens or a cylindrical Luneburg lens (approximated by a finite number of stepped-index dielectric layers) when illuminated by an electromagnetic plane wave is studied using the semi-analytic Method of Regularization. Because of similar underlying physical principles, these studies provide insight into the 3-D analogue. The radar cross section calculations of the two reflectors for incidence angles varying from normal to grazing incidence show that the cheaper-to-manufacture constant-K lens reflector is able to provide a more powerful and stable backscattering performance than the cylindrical Luneburg lens reflector, for electrical sizes in the range considered.
Citation
Kaiser Lock, and Sergei S. Vinogradova, "A Comparison of the Performance of Cylindrical Lens Reflectors and Stepped-Indexed Cylindrical Luneburg Lens Reflectors: Simpler Is Better?," Progress In Electromagnetics Research B, Vol. 43, 109-127, 2012.
doi:10.2528/PIERB12053004
References

1. Hyge, G., "Studies of the focal region of a spherical reflector: Stationary phase evaluation," IEEE Trans. Antennas and Propag., Vol. 16, 646-656, 1968.
doi:10.1109/TAP.1968.1139288

2. Spencer, R. K. and G. Hyge, "Studies of the focal region of a spherical reflector. Part I: Geometric optics," IEEE Trans. Antennas and Propag., Vol. 16, 317-324, 1968.
doi:10.1109/TAP.1968.1139187

3. Spencer, R. K. and G. Hyge, "Studies of the focal region of a spherical re°ector. Part II: Polarization effects," IEEE Trans. Antennas and Propag., Vol. 16, 399-404, 1968.
doi:10.1109/TAP.1968.1139187

4. Mieras, H., "Radiation pattern computation of a spherical lens using Mie series," IEEE Trans. Antennas and Propag., Vol. 30, 1221-1224, 1982.
doi:10.1109/TAP.1982.1142943

5. Ji, Y. and K. Hongo, "Field in the focal region of a dielectric spherical lens," J. Opt. Soc. Am. A, Vol. 8, 1721-1728, 1991.
doi:10.1364/JOSAA.8.001721

6. Sanford, J. R., "Analysis of spherical radar cross-section enhancers," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 6, 1400-1403, 1995.
doi:10.1109/22.390205

7. Sakurai, H., T. Hashidate, M. Ohki, K. Motojima, and S. Kozaki, "Electromagnetic scattering by the Luneberg lens with reflecting cap," IEEE Trans. on Electromagnetic Compatibility, Vol. 40, 94-96, 1998.
doi:10.1109/15.673612

8. Vinogradov, S. S., "Microwave spherical focusing systems," 6th International Conference on Antenna Theory & Techniques, 15-19, 2007.
doi:10.1109/ICATT.2007.4425108

9. Vinogradov, S. S., P. D. Smith, J. S. Kot, and N. Nikolic, "Radar cross-section studies of spherical lens reflectors," Progress In Electromagnetics Research, Vol. 72, 325-337, 2007.
doi:10.2528/PIER07031206

10. Huang, M., S. Yang, W. Xiong, and Z.-P. Nie, "Design and optimization of spherical lens antennas including practical feed models," Progress In Electromagnetics Research, Vol. 120, 355-370, 2011.

11. Andreeva, I. B. and V. G. Samovol'kin, "Sound scattering by elastic cylinders of finite length," Sov. Phys. Acoust., Vol. 22, No. 5, 361-364, 1977.

12. Vinogradov, S. S., P. D. Smith, and E. D. Vinogradova, Canonical Problems in Scattering and Potential Theory. Part I, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Vol. 122, 2001.

13. Vinogradov, S. S., P. D. Smith, and E. D. Vinogradova, Canonical Problems in Scattering and Potential Theory. Part II, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Vol. 127, 2002.