Vol. 47
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-01-08
Dual-Layer EBG Structures for Low-Profile ``Bent'' Monopole Antennas
By
Progress In Electromagnetics Research B, Vol. 47, 315-337, 2013
Abstract
We propose in this paper the design, realization and experimental characterization of a low-profile metamaterial ``bent'' monopole antenna with a total height of 0.027 λ0 and a fractional bandwidth of 24.4% around 1.3 GHz. The metamaterial structure is a dual-layer mushroom-like electromagnetic band gap (DL-EBG) conceived and optimized to improve the antenna's operating bandwidth. Moreover, a ``Sabre-Type'' antenna composed by two identical ``bent'' monopole metamaterial antennas placed on both sides of a composite thin slab material has been simulated and realized. The ``sabre" antenna provides a vertically polarization and omnidirectional radiation patterns in the elevation plane while its radiation patterns are almost directional in the azimuth plane. A maximum gain of 8.7 dB is obtained by measurement at 1.45 GHz. A remarkable agreement is obtained between the measured and the simulated results.
Citation
Tangjie Yuan, Habiba Hafdallah-Ouslimani, Alain C. Priou, Guillaume Lacotte, and Gerard Collignon, "Dual-Layer EBG Structures for Low-Profile ``Bent'' Monopole Antennas," Progress In Electromagnetics Research B, Vol. 47, 315-337, 2013.
doi:10.2528/PIERB12110502
References

1. Sievenpiper, D., Low-profile antenna, U.S. Patent 7050003, May 23, 2006.
doi:10.1049/el:20001015

2. Hansen, R. C., Electrically Small, Superdirective, and Superconducting Antennas, 82-89, New Jersey, 2006.

3. Hoorfar, A., "An experimental study of microstrip antennas on very high permittivity ceramic substrates and very small ground planes," IEEE Trans. Antennas Propagation, Vol. 49, No. 5, 838-840, May 2001.
doi:10.1109/8.929638

4. Olaode, O. O., "Characterization of meander dipole antennas with a geometry based, frequency-independent lumped element model," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 346-349, 2012.
doi:10.1109/LAWP.2012.2191380

5. Ares-Pena, F. J., "Genetic algorithms in the design and optimization of antenna array patterns," IEEE Trans. Antennas Propagation, Vol. 47, No. 3, 506-510, March 1999.
doi:10.1109/8.768786

6. Sievenpiper, D., L. Zhang, R. F. Jimenez Broas, N. G. Alexópolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, November 1999.

7. Sievenpiper, D., J. Colburn, B. Fong, M. Ganz, M. Gyure, J. Lynch, J. Ottusch, and J. Visher, Artificial impedance surface, U.S. Patent 7830310, November 9, 2010.

8. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Trans. Antennas Propagation, Vol. 51, No. 10, 2691-2703, 2003.
doi:10.1109/TAP.2003.817559

9. Rahman, M. and M. Stuchly, "Wide-band microstrip patch antenna with planar PBG structure," Proc. IEEE APS Dig., Vol. 2, 486-489, 2001.

10. Tran, C. M., H. H. Ouslimani, L. Zhou, and A. C. Priou, "High impedance surfaces based antennas for high data rate communications at 40 GHz," Progress In Electromagnetic Research C, Vol. 13, 217-229, 2010.
doi:10.2528/PIERC10040404

11. Yang, F., A. Aminian, and Y. Rahmat-Samii, "A low profile surface wave antenna equivalent to a vertical monopole antenna," IEEE APS Int. Symp. Dig., Vol. 2, 1939-1942, Monterey, CA, June 20-26, 2004.

12. Yang, F. and Y. Rahmat-Samii, "Bent monopole antennas on EBG ground plane with reconfigurable radiation patterns," IEEE APS Int. Symp. Dig., Vol. 2, 1819-1822, Monterey, CA, June 20-26, 2004.

13. Yang, F. and Y. Rahmat-Samii, "Polarization dependent electromagnetic band gap (PDEBG) structures: Designs and applications ," Microwave Optical Tech. Lett., Vol. 41, No. 6, 439-444, 2004.
doi:10.1002/mop.20164

14. Gonzalo, R., P. Maagt, and M. Sorolla, "Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates," IEEE Trans. Microwave Theory Tech., Vol. 47, 2131-2138, 1999.
doi:10.1109/22.798009

15. Tavallaee, A. and Y. Rahmat-Samii, "A novel strategy for broadband and miniaturized EBG designs: Hybrid MTL theory and PSO algorithm ," IEEE APS Int. Symp. Dig., 161-164, June 2007.

16. Cheng, H. R. and Q. Y. Song, "Design of a novel EBG structure and its application in fractal microstrip antenna," Progress In Electromagnetics Research C, Vol. 11, 81-90, 2009.
doi:10.2528/PIERC09091403

17. Rahmat-Samii, Y. and H. Mosallaei, "Electromagnetic band-gap structures: Classification, characterization and applications," Proceedings of IEE-ICAP Symposium, 560-564.

18. Qu, D., L. Shafai, and A. Foroozesh, "Improving microstrip patch antenna performance using EBG substrates," IEE Proc. Microwaves, Antennas Propagation, Vol. 153, No. 6, 558-563, 2006.
doi:10.1049/ip-map:20060015

19. Kildal, P.-S., "Artificially soft and hard surfaces in electromagnetics," IEEE Trans. Antennas Propagation, Vol. 38, No. 10, 1537-1544, 1990.
doi:10.1109/8.59765

20. De Maagt, P., R. Gonzalo, Y. C. Vardaxoglou, and J.-M. Baracco, "Electromagnetic band gap antennas and components for microwave and (sub) millimeter wave applications," IEEE Trans. Antennas Propagation, Vol. 51, No. 10, 2667-2677, 2003.
doi:10.1109/TAP.2003.817566

21. Azad, M. Z. and M. Ali, "Novel wideband directional dipole antenna on a mushroom like EBG structure," IEEE Trans. Antennas Propagation, Vol. 56, 1242-1250, May 2008.
doi:10.1109/TAP.2008.922673

22. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Chapter 3, 59-61, 2009.
doi:10.1017/CBO9780511754531

23. Zhao, Y., Y. Hao, and C. G. Parini, "Radiation properties of PIFA on electromagnetic bandgap substrates," Microwave and Optical Technology Letters, Vol. 44, No. 1, January 5, 2005.

24. Fogiel, M. and J. J. Molitoris, The Physics Problem Solver, Université de l'État de Pennsylvanie, 2000.

25. Ghosh, S., T.-N. Tran, and T. Le-Ngoc, "A dual-layer EBG-based miniaturized patch multi-antenna structure," IEEE International Symposium on Antennas and Propagation (APSURSI), 1828-1831, July 2011.

26. Azarbar, A. and J. Ghalibafan, "A compact low-permittivity dual-layer EBG structure for mutual coupling reduction," International Journal of Antennas and Propagation, Vol. 2011, Article ID 237454, June 2011.

27. Boisbouvier, N., A. Louzir, F. Le Bolzer, A.-C. Tarot, and K. Mahdjoubi, "A double layer EBG structure for slot-line printed devices," IEEE Antennas and Propagation Society International Symposium , Vol. 4, 3553-3556, June 2004.

28. Zhang, L.-J., C.-H. Liang, L. Liang, and L. Chen, "A novel design approach for dual-band electromagnetic band-gap structure," Progress In Electromagnetics Research M, Vol. 4, 81-91, 2008.
doi:10.2528/PIERM08071107

29. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, January 2005.
doi:10.1109/TMTT.2004.839352

30. Sievenpiper, D. F., High-impedance electromagnetic surfaces, Ph.D. Dissertation at University of California, Chapter 3, 28-30, Los Angeles, 1999 .