1. Kalyanasundaram, N. and G. N. Babu, "Dispersion of electromagnetic waves guided by an open tape helix I," Progress In Electromagnetics Research B, Vol. 16, 311-331, 2009.
doi:10.2528/PIERB09052608 Google Scholar
2. Kalyanasundaram, N. and G. N. Babu, "Propagation of electromagnetic waves guided by an open tape helix," IEEE International Vacuum Electronics Conference, 185-186, Feb. 21-24, 2011.
3. Kalyanasundaram, N. and G. N. Babu, "Perfectly conducting tape-helix model for guided electromagnetic wave propagation," IET Microwaves, Antennas & Propagation, Vol. 6, No. 8, 899-907, Jun. 7, 2012.
doi:10.1049/iet-map.2011.0446 Google Scholar
4. Sensiper, S., Electromagnetic wave propagation on helical conductors, Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, Mar. 1951.
5. Chodorov, M. and E. L. Chu, "Cross-wound twin helices for traveling-wave tubes," J. Appl. Phys., Vol. 26, No. 1, 33-43, 1955.
doi:10.1063/1.1721859 Google Scholar
6. Watkins, D. A., Topics in Electromagnetic Theory, John Wiley & Sons, New York, 1958.
7. Zhang, K. A. and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics, 2nd Ed., Springer-Verlag, Berlin-Heidelberg, 2008.
8. Basu, B. N., Electromagnetic Theory and Applications in Beam wave Electronics, World Scientific, Singapore, 1996.
9. Jain, P. K. and B. N. Basu, "The inhomogeneous loading effects of practical dielectric supports for the helical slow-wave structure of a TWT," IEEE Transactions on Electron Devices, Vol. 34, No. 12, 2643-2648, Dec. 1987.
doi:10.1109/T-ED.1987.23366 Google Scholar
10. Tien, P. K., "Traveling-wave tube helix impedance," Proceedings of the IEEE, Vol. 41, No. 11, 1617-1623, Nov. 1953.
11. McMurtry, J. B., "Fundamental interaction impedance of a helix surrounded by a dielectric and a metal shield," IEEE Transactions on Electron Devices, Vol. 9, No. 2, 210-216, 1962.
doi:10.1109/T-ED.1962.14972 Google Scholar
12. Uhm, H. S., "Electromagnetic-wave propagation in a conducting waveguide loaded with a tape helix," IEEE Transactions on Microwave Theory and Techniques, Vol. 31, No. 9, 704-710, Sep. 1983.
doi:10.1109/TMTT.1983.1131578 Google Scholar
13. D'Agostino, S., F. Emma, and C. Paoloni, "Accurate analysis of helix slow-wave structures," IEEE Transactions on Electron Devices, Vol. 45, No. 7, 1605-1613, 1998.
doi:10.1109/16.701495 Google Scholar
14. Tsutaki, K., Y. Yuasa, and Y. Morizumi, "Numerical analysis and design for high-performance helix traveling wave tubes," IEEE Transactions on Electron Devices, Vol. 32, No. 9, 1842-1849, 1985.
doi:10.1109/T-ED.1985.22207 Google Scholar
15. Kosmahl, H. G., G. M. Branch, and Jr., "Generalized representation of electric fields in interaction gaps of klystrons and traveling-wave tubes," IEEE Transactions on Electron Devices, Vol. 20, No. 7, 621-629, Jul. 1973.
doi:10.1109/T-ED.1973.17713 Google Scholar
16. Chen, Q., Z. Wang, and H. Wu, "The dispersion characteristics of vane loaded tape helix slow wave structure," International Conference on Microwave and Millimeter Wave Technology Proceedings, Beijing Vacuum Electronics Research Institute, Beijing, 1998.
17. Chernin, D., T. M. Antonsen, Jr., and B. Levush, "Exact treatment of the dispersion and beam interaction impedance of a thin tape helix surrounded by a radially stratified dielectric," IEEE Transactions on Electron Devices, Vol. 46, No. 7, 1472-1483, Jul. 1999.
doi:10.1109/16.772493 Google Scholar
18. Gilmour, A. S., Klystrons, Traveling Wave Tubes, Magnetrons, Cross-Field Amplifiers, Gyrotrons, Artech House, 2011.
19. Katzenelson, Y., An Introduction to Harmonic Analysis, 3rd Ed., Cambridge University Press, 2004.
20. Davidson, K. R. and A. P. Dosig, Real Analysis with Real Applications, Prentice-Hall, 2002.