Vol. 63
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-07-16
Novel Compact and Dual-Broadband Microstrip MIMO Antennas for Wireless Applications
By
Progress In Electromagnetics Research B, Vol. 63, 107-121, 2015
Abstract
Two novel microstrip MIMO antennas have been proposed and presented in this paper. The objective is to design a compact and dual-broadband MIMO antenna module appropriate for many wireless devices including WLAN, LTE and WiMax. The presented MIMO antennas have been analyzed, designed, simulated and investigated using CST_MW simulator. They have been fabricated (FR-4 substrate), and their scattering matrices and total efficiencies have been measured. The first MIMO antenna module is composed of four proposed broadband microstrip antennas arranged in two MIMO antenna pairs. The first MIMO pair resonates at 5.2 GHz (5.08-5.313 GHz) while the second pair resonates at 5.8 GHz (5.643-5.96 GHz). This MIMO antenna has a compact size of 40x40 mm2, dual-broadband, minimum mutual coupling below -25 dB, bandwidth greater than 225 MHz and gain of 3.8 dBi. The second MIMO antenna module consists of two proposed and modified dual-broadband microstrip monopole antennas, where, each has a dual resonance at 3.7 GHz (3.46-3.94 GHz) and 5.2 GHz (4.99-5.41 GHz). This MIMO antenna has an overall compact size of 20x50 mm2, minimum coupling below -22 dB, bandwidth greater than 425 MHz and gain of 2.5 dBi. Good agreement has been achieved between measured and simulated results. The proposed MIMO antennas cover many wireless applications with the following specifications: compact size, dual-broadband, moderate gain, good efficiency and high port-to-port isolation.
Citation
Hussein Hamed Ghouz, "Novel Compact and Dual-Broadband Microstrip MIMO Antennas for Wireless Applications," Progress In Electromagnetics Research B, Vol. 63, 107-121, 2015.
doi:10.2528/PIERB15051304
References

1. Vaughnan, R. G. and J. B. Andersen, "Antenna diversity in mobile communication," IEEE Transactions on Vehicular Technology, Vol. 36, No. 4, 149-172, 1987.
doi:10.1109/T-VT.1987.24115        Google Scholar

2. Foschini, G. J. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Communication, Vol. 6, 311-335, 1998.
doi:10.1023/A:1008889222784        Google Scholar

3. Casal, C. R., F. Schoute, and R. Prasald, "A novel concept for fourth generation mobile multimedia communication," 50th Proc. IEEE Vehicular Technology Conference, Vol. 1, 381-385, Amsterdam, Netherlands, Sep. 1999.        Google Scholar

4. Shin, H. and J. H. Lee, "Capacity of multiple-antenna fading channels: Spatial fading correlation, double scattering, and keyhole," IEEE Transactions on Information Theory, Vol. 49, No. 10, 2636-2647, Oct. 2003.
doi:10.1109/TIT.2003.817439        Google Scholar

5. Kumaravel, K., "Comparative study of 3G and 4G in mobile technology," IJCSI International Journal of Computer Science Issues, Vol. 8, No. 5(3), 256-263, Sep. 2011.        Google Scholar

6. Zhou, X., R. Li, and M. M. Tentzeris, "A compact broadband MIMO antenna for mobile handset applications," International Symposium (APSURSI) on Antennas and Propagation, 1-4, 2010.        Google Scholar

7. Zhang, T., et al. "A novel multiband planar antenna for GSM/UMTS/LTE/Zigbee/RFID mobile devices," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 11, 4209-4214, Nov. 2011.
doi:10.1109/TAP.2011.2164201        Google Scholar

8. Jagadeesh Babu, K., K. Sri Rama Krishna, and L. Pratap Reddy, "A multi slot patch antenna for 4G MIMO communications," International Journal of Future Generation Communication and Networking, Vol. 4, No. 2, 105-112, Jun. 2011.        Google Scholar

9. See, C. H., et al. "Wideband printed MIMO/diversity monopole antenna for WiFi/WiMax applications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 2028-2035, Apr. 2012.
doi:10.1109/TAP.2012.2186247        Google Scholar

10. Li, J.-F., Q.-X. Chu, and T.-G. Huang, "A compact wideband MIMO antenna with two novel bent slits," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 482-489, Feb. 2012.
doi:10.1109/TAP.2011.2173452        Google Scholar

11. Su, S.-W., C.-T. Lee, and F.-S. Chang, "Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 456-463, Feb. 2012.
doi:10.1109/TAP.2011.2173450        Google Scholar

12. Ayatollahi, M., Q. Rao, and D. Wang, "A compact, high isolation and wide bandwidth antenna array for long term evolution wireless devices," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 4960-4963, Oct. 2012.
doi:10.1109/TAP.2012.2207312        Google Scholar

13. Lee, S. H., C. Y. Yang, and W. G. Yang, "High isolation MIMO antenna design by using ground slits for mobile handset," PIERS Proceedings, 589-593, Moscow, Russia, Aug. 19–23, 2012.        Google Scholar

14. Zulkifli, F. Y., Daryanto, and E. T. Rahardjo, "Slot ring triangular patch antenna with stub for MIMO 2 × 2 wireless broadband applications," Proceedings of the International Symposium on Antennas and Propagation (ISAP), Vol. 2, 885-887, 2013.        Google Scholar

15. Zhao, X., Y. Lee, and J. Choi, "MIMO antenna using resonance of ground planes for LTE mobile application," IEEE International Symposium (APSURSI) on Antennas and Propagation, 184-185, 2013.        Google Scholar

16. Xia, X.-X., Q.-X. Chu, and J.-F. Li, "Design of a compact wideband MIMO antenna for mobile terminals," Progress In Electromagnetics Research C, Vol. 41, 163-174, 2013.
doi:10.2528/PIERC13042104        Google Scholar

17. Addaci, R., et al. "Dual-band WLAN multiantenna system and diversity/MIMO performance evaluation," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1409-1415, Mar. 2014.
doi:10.1109/TAP.2013.2294955        Google Scholar

18. Dioum, I., et al. "A novel compact dual-band LTE antenna-system for MIMO operation," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 2291-2296, Apr. 2014.
doi:10.1109/TAP.2014.2301151        Google Scholar

19. Roshan, R. and R. K. Singh, "Dual ISM band MIMO antenna for WiFi and WiMax application," International Conference on Signal Propagation and Computer Technology (ICSPCT), 209-213, 2014.
doi:10.1109/ICSPCT.2014.6884936        Google Scholar

20. Yeh, J.-T., et al. "Compact internal antenna for handheld devices with comprehensive DTV band coverage," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 3998-4007, Aug. 2014.
doi:10.1109/TAP.2014.2324552        Google Scholar

21. Wang, H., et al. "Wideband tri-port MIMO antenna with compact size and directional radiation pattern," Electronics Letters, Vol. 50, No. 18, 1261-1262, Aug. 28, 2014.
doi:10.1049/el.2014.2291        Google Scholar

22. Moradi Kordalivand, A., et al. "Common elements widebandMIMO antenna system forWiFi/LTE access-point applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1601-1604, 2014.
doi:10.1109/LAWP.2014.2347897        Google Scholar

23. Andujar, A. and J. Anguera, "MIMO multiband antenna system with non-resonant elements," Microwave and Optical Technology Letters, Vol. 57, No. 1, 183-190, Jan. 2015.
doi:10.1002/mop.28810        Google Scholar

234. Li, G., et al. "AMC-loaded wideband base station antenna for indoor access point in MIMO system," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 525-533, Jan. 2015.
doi:10.1109/TAP.2014.2378316        Google Scholar

25. Kadu, M. B., et al. "Dual band microstrip patch antenna for MIMO system," International Conferenceon Pervasive Computing (ICPC), 1-4, Pune, Jan. 8–10, 2015.        Google Scholar

26. Anguera, J., I. Sanz, J. Mumbru, and C. Puente, "Multi-band handset antenna with a parallel excitation of PIFA and slot radiators," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 348-356, Feb. 2010.
doi:10.1109/TAP.2009.2038183        Google Scholar

27. Abedin, M. F. and M. Ali, "Modifying the ground plane and its effect on planar inverted-F antennas (PIFAs) for mobile phone handsets," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 2003.        Google Scholar

28. Wong, K. L., J. S. Kuo, and T. W. Chiou, "Compact microstrip antennas with slots loaded in the ground plane," 11th International Conference on Antennas and Propagation, Vol. 480, Apr. 2001.        Google Scholar