1. Hall, H. and H. L. Heck, Advanced Signal Integrity for High-speed Digital Designs, John Wiley & Sons, 2011.
2. Lee, B., M. Mazumder, and R. Mellitz, "High speed differential I/O overview and design challenges on Intel enterprise server platforms," IEEE Symp. Electromagn. Compat., 779-784, Aug. 14-19, 2011. Google Scholar
3. Beyene, W. T., "The design of continuous-time linear equalizers using model order reduction techniques," Proceedings of IEEE Electrical Performance of Electronic Packaging (EPEP), 187-190, Oct. 2008. Google Scholar
4. Holdenried, C., R. Bespalko, S. Sadr, and K. Walsh, "Design challenges of RX equalizer and DFE design at 16 GT/s,", PCI-SIG, 2013. Google Scholar
5. Parikh, S., T. Kao, Y. Hidaka, J. Jiang, A. Toda, S. Mcleod, W. Walker, Y. Koyanagi, T. Shibuya, and J. Yamada, "A 32 Gb/s wireline receiver with a low-frequency equalizer, CTLE and 2-tap DFE in 28 nm CMOS," 2013 IEEE International Solid-State Circuits Conference (ISSCC), 2013. Google Scholar
6. Kimura, H., P. M. Aziz, T. Jing, A. Sinha, S. P. Kotagiri, R. Narayan, H. Gao, et al. "A 28 Gb/s 560 mW multi-standard SerDes with single-stage analog front-end and 14-tap decision feedback equalizer in 28 nm CMOS," IEEE Journal of Solid-State Circuits, Vol. 49, No. 12, 3091-3103, 2014.
doi:10.1109/JSSC.2014.2349974 Google Scholar
7. Huang, S. and B. Lee, "New broadband equalizer optimization technique for digital system designs," 2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, CA, Oct. 25-28, 2015. Google Scholar
8. Li, C., R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, et al. "Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS," IEEE Journal of Solid-State Circuits, Vol. 49, No. 6, 1419-1436, 2014.
doi:10.1109/JSSC.2014.2321574 Google Scholar
9. Zhang, B., K. Khanoyan, H. Hatamkhani, H. Tong, K. Hu, S. Fallahi, K. Vakilian, and A. Brewster, "3.1 A 28 Gb/s multi-standard serial-link transceiver for backplane applications in 28 nm CMOS," 2015 IEEE International Solid-State Circuits Conference (ISSCC), 1-3, 2015. Google Scholar
10. Yuan, S., Z. Wang, X. Zheng, W. Jia, L. Wu, C. Zhang, and Z. Wang, "10 Gbit/s serial link receiver with speculative decision feedback equaliser using mixed-signal adaption in 65 nm CMOS technology," Electronics Letters, Vol. 51, No. 21, 1645-1647, 2015.
doi:10.1049/el.2015.1318 Google Scholar
11. Kim, M., J. Bae, U. Ha, and H.-J. Yoo, "A 24-mW 28-Gb/s wireline receiver with low-frequency equalizing CTLE and 2-tap speculative DFE," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 1610-1613, 2015.
doi:10.1109/ISCAS.2015.7168957 Google Scholar
12. Wang, H., B. Yan, Z. Wang, and R.-M. Xu, "A broadband microwave gain equalizer," Progress In Electromagnetics Research Letters, Vol. 33, 63-72, 2012.
doi:10.2528/PIERL12052309 Google Scholar
13. Inmet, A. and M. I. Ann Arbor, "Adjustable mm-wave gain equalizers," Microwave Journal, Aug. 3, 2007. Google Scholar
14. Kampa, J. and K. Petrus, "Microwave amplitude equalizer," 13th International Conference on Microwaves, Radar and Wireless Communications, Vol. 1, 37-40, 2000. Google Scholar
15. Zhou, T.-F., Y. Zhang, and R.-M. Xu, "Research on the millimeter wave gain equalizer," IEEE International Conference on Microwave Technology & Computational Electromagnetics (ICMTCE), 180-182, May 2011. Google Scholar
16. Silapunt, R. and D. Torrungrueng, "Theoretical study of microwave transistor amplifier design in the conjugately characteristic-impedance transmission line (CCITL) system using a bilinear transformation approach," Progress In Electromagnetics Research, Vol. 120, 309-326, 2011.
doi:10.2528/PIER11080504 Google Scholar
17. Khalaj-Amirhosseini, M., "Analysis of coupled or single nonuniform transmission lines using step-by-step numerical integration," Progress In Electromagnetics Research, Vol. 58, 187-198, 2006. Google Scholar
18. Raphaeli, D. and A. Saguy, "Linear equalizers for Turbo equalization: A new optimization criterion for determining the equalizer taps," Proc. 2nd Intern. Symp. on Turbo Codes, 371-374, Brest, France, 2000. Google Scholar
19. Patrick, K. D. and A. A. Abidi, "A 40-mW 55 Mb/s CMOS equalizer for use in magnetic storage read channels," IEICE Transactions on Electronics, Vol. 77, No. 5, 819-829, 1994. Google Scholar
20. Lee, I., "Optimization of tap spacings for the tapped delay line decision feedback equalizer," IEEE Communications Letters, Vol. 5, No. 10, 429-431, 2001.
doi:10.1109/4234.957384 Google Scholar
21. Su, T.-J., J.-C. Cheng, and C.-J. Yu, "An adaptive channel equalizer using self-adaptation bacterial foraging optimization," Optics Communications, Vol. 283, No. 20, 3911-3916, 2010.
doi:10.1016/j.optcom.2010.06.007 Google Scholar
22. Song, E., J. Cho, J. Kim, Y. Shim, G. Kim, and J. Kim, "Modeling and design optimization of a wideband passive equalizer on PCB based on near-end crosstalk and reflections for high-speed serial data transmission," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 2, 410-420, 2010.
doi:10.1109/TEMC.2010.2042452 Google Scholar
23. Hsu, H.-T., H.-W. Yao, K. Zaki, and A. E. Atia, "Synthesis of coupled-resonators group-delay equalizers," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 8, 1960-1968, 2002.
doi:10.1109/TMTT.2002.801344 Google Scholar