Vol. 68
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-06-30
A Complex Mix-Shifted Parallel QR Algorithm for the C-Method
By
Progress In Electromagnetics Research B, Vol. 68, 159-171, 2016
Abstract
The C-method is an exact method for analyzing gratings and rough surfaces. This method leads to large-size dense complex non-Hermitian eigenvalue. In this paper, we introduce a parallel QR algorithm that is specifically designed for the C-method. We define the ``early shift'' for the matrix according to the observed properties. We propose a combination of the ``early shift'', Wilkinson's shift and exceptional shift together to accelerate convergence. First, we use the ``early shift'' in order to have quick deflation of some eigenvalues. The multi-window bulge chain chasing and parallel aggressive early deflation are used. This approach ensures that most computations are performed in level 3 BLAS operations. The aggressive early deflation approach can detect deflation much quicker and accelerate convergence. Mixed MPI-OpenMP techniques are used for performing the codes to hybrid shared and distributed memory platforms. We validate our approach by comparison with experimental data for scattering patterns of two-dimensional rough surfaces.
Citation
Cihui Pan, Richard Dusséaux, and Nahid Emad, "A Complex Mix-Shifted Parallel QR Algorithm for the C-Method," Progress In Electromagnetics Research B, Vol. 68, 159-171, 2016.
doi:10.2528/PIERB16040806
References

1. Chandezon, J., D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J. Optics (Paris), Vol. 11, 235-241, 1980.
doi:10.1088/0150-536X/11/4/005

2. Li, L. and J. Chandezon, "Improvement of the coordinate transformation method for surface-relief gratings with sharp edges," J. Opt. Soc. Am. A, 2247-2255, 1996.
doi:10.1364/JOSAA.13.002247

3. Granet, G., "Analysis of diffraction by surface-relief crossed gratings with use of the Chandezon method: Application to multilayer crossed gratings," J. Opt. Soc. Am. A, Vol. 15, 1121-1131, 1998.
doi:10.1364/JOSAA.15.001121

4. Ait Braham, K., R. Dusseaux, and G. Granet, "Scattering of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces --- Study with the curvilinear coordinate method," Waves Random Complex Media, Vol. 18, 255-274, 2008.
doi:10.1080/17455030701749328

5. Dusseaux, R., K. Ait Braham, and G. Granet, "Implementation and validation of the curvilinear coordinate method for the scattering of electromagnetic waves from two-dimensional dielectric random rough surfaces," Waves Random Complex Media, Vol. 18, 551-570, 2008.
doi:10.1080/17455030802126913

6. Dusseaux, R., E. Vannier, O. Taconet, and G. Granet, "Study of backscatter signature for seedbed surface evolution under rainfall --- Influence of radar precision," Progress In Electromagnetics Research, Vol. 125, 415-437, 2012.
doi:10.2528/PIER11102807

7. Elfouhaily, T. M. and C. A. Guerin, "A critical survey of approximate scattering wave theories from random rough surfaces," Waves in Random and Complex Media, Vol. 14, R1-10, 2004.
doi:10.1088/0959-7174/14/4/R01

8. Bai, Z., J. W. Demmel, J. J. Dongarra, A. Ruhe, and H. van Der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems. Software, Environments, and Tools, SIAM.

9. Golub, G. H. and F. Uhlig, "The QR algorithm: 50 years later its genesis by John Francis and Vera Kublanovskaya and subsequent developments," IMA J. Numer. Anal., Vol. 29, 467-485, 2009.
doi:10.1093/imanum/drp012

10. Golub, G. H. and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, 1996.

11. Braman, K., R. Byers, and R. Mathias, "The multi-shift QR algorithm. Part I: Maintaining well-focused shifts and level 3 performance," SIAM J. Matrix Anal. Appl., Vol. 23, 929-947, 2002.
doi:10.1137/S0895479801384573

12. Granat, R., B. Kagstrom, and D. Kressner, "A novel parallel QR algorithm for hybrid distributed memory HPC systems," SIAM J. Sci. Comput., Vol. 32, 2345-2378, 2010.
doi:10.1137/090756934

13. Braman, K., R. Byers, and R. Mathias, "The multi-shift QR algorithm. Part II: Aggressive early deflation," SIAM J. Matrix Anal. Appl., Vol. 23, 948-972, 2002.
doi:10.1137/S0895479801384585

14. MPI --- Messaging passing interface, See http://www.mcs.anl.gov/research/projects/mpi/.

15. OpenMP --- Open multi-processing, See http://openmp.org/wp/.

16. BLAS --- Basic linear algebra subprograms, See http://www.netlib.org/blas/.

17. ScaLAPACK --- Scalable linear algebra package, , See http://www.netlib.org/scalapack/.

18. Kong, J. A., K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves --- Numerical Simulations, Wiley-Interscience, 2001.
doi:10.1002/0471224308

19. Afifi, S. and R. Dusseaux, "Scattering by anisotropic rough layered 2D interfaces," IEEE Trans. Antennas Propag., Vol. 60, 5315-5328, 2012.
doi:10.1109/TAP.2012.2207671

20. Berginc, G., "Small-slope approximation method: A further study of vector wave scattering from two-dimensional surfaces and comparison with experimental data," Progress In Electromagnetics Research, Vol. 37, 251-287, 2002.
doi:10.2528/PIER02070603

21. Johnson, J. T., L. Tsang, R. T. Shin, K. Pak, C. H. Chan, A. Ishimaru, and Y. Kuga, "Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces: A comparison of Monte-Carlo simulations with experimental data," IEEE Trans. Antennas Propag., Vol. 44, 748-756, 1996.
doi:10.1109/8.496261