Vol. 70
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-11-14
Retrieval of the Frequency-Dependent Effective Permeability and Permittivity of the Inhomogeneous Material in a Layer
By
Progress In Electromagnetics Research B, Vol. 70, 131-147, 2016
Abstract
This study is focused on how to obtain the effective or equivalent properties of inhomogeneous materials, which, contrary to the usual metamaterials, are assumed to possess only a sandwichlike form of heterogeneity. More specifically, the aim is to see how the method of inversion, and associated type and amount of data, condition the outcome of the inversion, notably as concerns the possibility or not of exotic features such as simultaneous negative permittivity and permeability in certain frequency intervals. Two inversion schemes are considered and compared: the Nicolson-Ross-Weir (NRW) scheme and an optimization scheme. The adopted form of the optimization scheme provides only numerical retrievals, but it applies to any number of far-field data couples, which fact makes it a useful tool for determining whether the retrieved properties of an inhomogeneous material really are independent of the angle of incidence as is required for effective properties. It is shown, via the optimization scheme, that the apparently infinite number of solutions predicted by the NRW scheme is reduced to a single solution-closest to the predictions of a mixture model-when the constraint of independence with respect to angle of incidence is invoked. Moreover, this solution exhibits none of the exotic features of the properties of the usual metamaterials except temporal dispersion and loss even when the component materials of the inhomogeneous layer are neither dispersive nor lossy.
Citation
Armand Wirgin, "Retrieval of the Frequency-Dependent Effective Permeability and Permittivity of the Inhomogeneous Material in a Layer," Progress In Electromagnetics Research B, Vol. 70, 131-147, 2016.
doi:10.2528/PIERB16080903
References

1. Barroso, J. J. and A. L. De Paula, "Retrieval of permittivity and permeability of homogeneous materials from scattering parameters," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11, 1563-1574, July 2010.

2. Chambouleyron, I. and J. M. Martinez, "Optical properties of dielectric and semiconductor thin films," Handbook of Thin Films Materials, Vol. 3, Nalwa H. S. (ed.), Academic Press, New York, 2001.

3. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

4. De Paula, A. L., M. C. Rezende, and J. J. Barroso, "Experimental measurements and numerical simulation of permittivity and permeability of Teflon in X band," J. Aerosp. Technol. Manag., Vol. 3, 59-64, Sao Jose dos Campos, 2011.

5. Hadamard, J., Lectures on Cauchy's Problem in Linear Partial Differential Equations, Yale University Press, New Haven, 1923.

6. Liu, X.-X. and A. Alu, "Generalized retrieval method for metamaterial constitutive parameters based on a physically-driven homogenization approach," Phys. Rev. B, Vol. 87, 235136, 2013.
doi:10.1103/PhysRevB.87.235136

7. Liu, X.-X., D. A. Powell, and A. Alu, "Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures," Phys. Rev. B, Vol. 84, 235106, 2011.
doi:10.1103/PhysRevB.84.235106

8. Markos, P. and C. M. Soukoulis, "Transmission properties and effective electromagnetic parameters of double negative metamaterials," Optics Expr., Vol. 11, 649-661, 2003.
doi:10.1364/OE.11.000649

9. Menzel, C., T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, "Validity of effective material parameters for optical fishnet metamaterials," Phys. Rev. B, Vol. 81, 035320, 2010.
doi:10.1103/PhysRevB.81.035320

10. Nicolson, A. M. and G. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

11. O'Brien, S. and J. B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Phys. Condens. Matter, Vol. 14, 4035-4044, 2002.
doi:10.1088/0953-8984/14/15/317

12. Ogam, E., Z. E. A. Fellah, and P. Baki, "The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder," J. Acoust. Soc. Am., Vol. 133, No. 3, 1443-1457, 2013.
doi:10.1121/1.4788976

13. Seal, M. D., M. W. Hyde, IV, and M. J. Havrilla, "Nondestructive complex permittivity and permeability extraction using a two-layer dual-waveguide probe measurement geometry," Progress In Electromagnetics Research, Vol. 123, 123-142, 2012.
doi:10.2528/PIER11111108

14. Sihvola, A., "Mixing models for heterogeneous and granular Media," Advances in Electromagnetics of Complex Media and Metamaterials, Zouhdi S., Sihvola A. and Arsalane M. (eds.), Kluwer, Amsterdam, 2002.

15. Simovski, C. R. and S. A. Tretyakov, "On effective electromagnetic parameters of artificial nanostructured magnetic materials," Photonics Nanostruct. Fundamen., Vol. 8, No. 4, 254-263, 2010.
doi:10.1016/j.photonics.2010.04.005

16. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

17. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

18. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382

19. Wirgin, A., "Optical properties of a noble metal with a string-of-pearls insulator inhomogeneity," Physica A, Vol. 157, 382-387, 1989.
doi:10.1016/0378-4371(89)90331-2

20. Woodley, J. and M. Mojahedi, "On the signs of the imaginary parts of the effective permittivity and permeability in metamaterials," J. Opt. Soc. Am. B, Vol. 27, 1016-1021, 2010.
doi:10.1364/JOSAB.27.001016