Vol. 76
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-06-10
A Generalized Hybrid Method for Electromagnetic Scattering Analysis of Multiple Objects
By
Progress In Electromagnetics Research B, Vol. 76, 1-22, 2017
Abstract
We propose a generalized hybrid method to achieve time efficient and accurate solutions for electromagnetic scattering and radiation problems involving complex scenes with multiple objects. The method utilizes frequency domain solutions, and is based on dividing the original computational domain into smaller sub-domains. Each sub-domain is first solved independently, then the interactions between the sub-domains are accounted for through an iterative procedure. The main difference of the proposed hybrid method in comparison with the current hybrid methods or the domain decomposition methods available in the literature is that the proposed method allows users to have the freedom to choose from a variety of techniques for each sub-domain; such as integral equation (IE), analytical and asymptotic methods that suit the problem at hand best. Current hybrid or domain decompositions methods rely on a predetermined combination of numerical techniques. This flexibility in the choice of the method employed for each sub-domain in the generalized hybrid method is achieved by creating an interface capable of interacting between the different sub-domains properly. Furthermore, the method renders to parallel implementation as each sub-domain is solved independently. The hybrid method in its current state can be applied to two different scenarios: (i) multiple non-touching homogeneous objects, and (ii) inhomogeneous objects. Numerical examples of various combinations of IE, analytical and asymptotic methods are presented to validate the accuracy and the robustness of the generalized hybrid method.
Citation
Quang M. Nguyen, and Ozlem Kilic, "A Generalized Hybrid Method for Electromagnetic Scattering Analysis of Multiple Objects," Progress In Electromagnetics Research B, Vol. 76, 1-22, 2017.
doi:10.2528/PIERB17021409
References

1. Harrington, R. F., Field Computation by Moment Method, Krieger Publ., 1982.

2. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Ant. Propag., Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693        Google Scholar

3. Jin , J. M., The Finite Element Method in Electromagnetics, John Wiley & Sons, 1993.

4. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications, IEEE Press, 1998.

5. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag., Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128        Google Scholar

6. Song, J. M. and W. C. Chew, "Multilevel fast multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microw. Opt. Tech. Lett., Vol. 10, 14-19, Sep. 1995.
doi:10.1002/mop.4650100107        Google Scholar

7. Canning, F. X., "The impedance matrix localization (IML) method for moment-method calculations," IEEE Antennas Propagat. Mag., Vol. 32, No. 5, 18-30, 1990.
doi:10.1109/74.80583        Google Scholar

8. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Science, Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504        Google Scholar

9. Stupfel, B. and M. Mognot, "A domain decomposition method for the vector wave equation," IEEE Trans. Antennas Propag., Vol. 48, No. 5, 653-660, May 2000.
doi:10.1109/8.855483        Google Scholar

10. Li, Y.-J. and J.-M. Jin, "A new dual-primal domain decomposition approach for finite element simulation of 3-D large-scale electromagnetic problems," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2803-2810, Oct. 2007.
doi:10.1109/TAP.2007.905954        Google Scholar

11. Lu, C. C. and W. C. Chew, "The use of Huygens’ equivalence principle for solving 3-D volume integral equation of scattering," IEEE Trans. Antennas Propag., Vol. 43, No. 5, 500-507, May 1995.
doi:10.1109/8.384194        Google Scholar

12. Jensen, M. A. and J. D. Freeze, "A recursive Green’s function method for boundary integral analysis of inhomogeneous domains," IEEE Trans. Antennas Propag., Vol. 46, No. 12, 1810-1816, Dec. 1998.
doi:10.1109/8.743817        Google Scholar

13. Xu, F. and W. Hong, "Analysis of two dimensions sparse multicylinder scattering problem using DD-FDTD method," IEEE Trans. Antennas Propagat., Vol. 52, No. 10, 2612-2617, Oct. 2004.
doi:10.1109/TAP.2004.834435        Google Scholar

14. Monorchio, A., A. R. Bretones, R. Mittra, G. Manara, and R. G. Martin, "A hybrid time-domain technique that combines the finite element, finite difference and method of moment techniques to solve complex electromagnetic problems," IEEE Trans. Antennas Propagat., Vol. 52, 2666-2673, 2004.
doi:10.1109/TAP.2004.834431        Google Scholar

15. Al Sharkawy, M. H., V. Demir, and A. Z. Elsherbeni, "The iterative multi-region algorithm using a hybrid finite difference frequency domain and method of moment techniques," Progress In Electromagnetics Research, Vol. 57, 19-32, 2006.
doi:10.2528/PIER05071001        Google Scholar

16. Hodges, R. E. and Y. Rahmat-Samii, "An iterative current-based hybrid method for complex structures," IEEE Trans. Antennas Propagat., Vol. 45, No. 2, 265-276, 1997.
doi:10.1109/8.560345        Google Scholar

17. Jakobus, U. and F. M. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 43, No. 2, 162-169, 1995.
doi:10.1109/8.366378        Google Scholar

18. Chen, M., X. W. Zhao, Y. Zhang, and C. H. Liang, "Analysis of antenna around NURBS surface with iterative MoM-PO technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1667-1680, 2006.
doi:10.1163/156939306779292372        Google Scholar

19. Carr, M. and J. L. Volakis, "Domain decomposition by iterative field bouncing," IEEE AP-S International Symposium (Digest), Vol. 3, 298-301, San Antonio, TX, 2001.        Google Scholar

20. Kim, C. S. and Y. Rahmat-Samii, "Low profile antenna study using the physical optics hybrid method (POHM)," Antennas and Propagation Society International Symposium, 1991, AP-S Digest, 1350-1353, IEEE, 1991.
doi:10.1109/APS.1991.175100        Google Scholar

21. Nguyen, Q. and O. Kilic, "Electromagnetic scattering from multiple domains using a hybrid numerical and analytical solution," ACES 2014, Jacksonville, FL, USA, Mar. 23–27, 2014.        Google Scholar

22. Nguyen, Q. and O. Kilic, "A hybrid method for electromagnetic scattering from multiple conducting objects," APS-URSI 2014, Memphis, TN, USA, Jul. 6–12, 2014.        Google Scholar

23. Phan, T., Q. Nguyen, and O. Kilic, "A hybrid technique for electromagnetic scattering from threedimensional inhomogeneous dielectric objects," ACES 2016, Honolulu, Hawaii, Mar. 13–17, 2016.        Google Scholar

24. Hansen, J. E., et al., Spherical Near-Field Antenna Measurements, Vol. 26, ser. IEE Electromagnetic Waves Series, Peter Peregrinus, 1988.
doi:10.1049/PBEW026E

25. Devaney, A. J. and E. Wolf, "Multipole expansions and plane wave representations of the electromagnetic field," Journal of Mathematical Physics, Vol. 15, No. 2, 234-244, 1974.
doi:10.1063/1.1666629        Google Scholar

26. Cappellin, C., O. Breinbjerg, and A. Frandsen, "Properties of the transformation from the spherical wave expansion to the plane wave expansion," Radio Sci., Vol. 43, No. 1, 2008.
doi:10.1029/2007RS003696        Google Scholar

27. Atkinson, C. K., "Numerical integration on the sphere," J. Austral. Mat. Soc. B, Vol. 23, No. 3, 332-347, 1982.
doi:10.1017/S0334270000000278        Google Scholar

28. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Tables, Dover, 1970.

29. Nguyen, Q. and O. Kilic, "An alternative plane wave decomposition of electromagnetic fields using the spherical wave expansion technique," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 153-156, 2017.
doi:10.1109/LAWP.2016.2562182        Google Scholar