Vol. 76
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-06-14
Data-Driven Strategies for Cross-Track Motion Compensation in Synthetic Aperture Radar Imaging
By
Progress In Electromagnetics Research B, Vol. 76, 59-71, 2017
Abstract
Nine different strategies are proposed to compensate the cross-track motion errors in synthetic aperture radar (SAR) imaging, based on estimating the phase coefficients of the phase history. A spline interpolation method and a subaperture reconstuction method are used to derive the phase history over the whole aperture, based on the phase coefficients previously estimated. Four different scenarios are designed to compare the performance of these nine strategies.
Citation
Po-Chih Chen, and Jean-Fu Kiang, "Data-Driven Strategies for Cross-Track Motion Compensation in Synthetic Aperture Radar Imaging," Progress In Electromagnetics Research B, Vol. 76, 59-71, 2017.
doi:10.2528/PIERB17031905
References

1. Kennedy, T. A., "A technique for specifying navigation system performance requirements in SAR motion compensation applications," IEEE Position Location Navigation Symp., 118-126, Las Vegas, NV, USA, Mar. 1990.

2. Buckreuss, S., "Motion compensation for airborne SAR based on inertial data, RDM and GPS," IEEE Geosci. Remote Sensing Symp., Vol. 4, 1971-1973, Pasadena, CA, USA, Aug. 1994.

3. Moreira, A. and Y. Huang, "Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation," IEEE Trans. Geosci. Remote Sensing, Vol. 32, No. 5, 1029-1040, Sep. 1994.
doi:10.1109/36.312891

4. Moreira, A., J. Mittermayer, and R. Scheiber, "Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and scanSAR imaging modes," IEEE Trans. Geosci. Remote Sensing, Vol. 34, No. 5, 1123-1136, Sep. 1996.
doi:10.1109/36.536528

5. Li, Y.-P., M.-D. Xing, and Z. Bao, "A new method of motion error extraction from radar raw data for SAR motion compensation," IEEE CIE Int. Conf. Radar, Shanghai, China, Oct. 2006.

6. Xing, M.-D., X.-W. Jiang, R.-B. Wu, F. Zhou, and Z. Bao, "Motion compensation for UAV SAR based on raw radar data," IEEE Trans. Geosci. Remote Sensing, Vol. 47, No. 8, 2870-2883, Aug. 2009.
doi:10.1109/TGRS.2009.2015657

7. Zhang, L., G.-Y. Wang, Z.-J. Qiao, and H.-X. Wang, "Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 10, No. 1, 184-193, Jan. 2017.
doi:10.1109/JSTARS.2016.2577588

8. Prats, P., K. A. C. Macedo, A. Reigber, R. Scheiber, and J. J. Mallorqui, "Comparison of topography- and aperture-dependent motion compensation algorithms for airborne SAR," IEEE Geosci. Remote Sensing Lett., Vol. 4, No. 3, 349-353, Jul. 2007.
doi:10.1109/LGRS.2007.895712

9. Macedo, K. A. C. and R. Scheiber, "Precise topography- and aperture-dependent motion compensation for airborne SAR," IEEE Geosci. Remote Sensing Lett., Vol. 2, No. 2, 172-176, Apr. 2005.
doi:10.1109/LGRS.2004.842465

10. Perna, S., V. Zamparelli, A. Pauciullo, and G. Fornaro, "Azimuth-to-frequency mapping in airborne SAR data corrupted by uncompensated motion errors," IEEE Geosci. Remote Sensing Lett., Vol. 10, No. 6, 1493-1497, Nov. 2013.
doi:10.1109/LGRS.2013.2260721

11. Zheng, X., W. Yu, and Z. Li, "A novel algorithm for wide beam SAR motion compensation based on frequency division," IEEE Int. Geosci. Remote Sensing Symp., 3143-3146, Denver, Colorado, USA, Aug. 2006.

12. Li, Y.-L., X.-D. Liang, C.-B. Ding, L.-J. Zhou, and Q. Ding, "Improvements to the frequency division-based subaperture algorithm for motion compensation in wide-beam SAR," IEEE Geosci. Remote Sensing Lett., Vol. 10, No. 5, 1219-1223, Sep. 2013.
doi:10.1109/LGRS.2012.2236817

13. Chen, Y.-C., G. Li, Q. Zhang, Q.-J. Zhang, and X.-G. Xia, "Motion compensation for airborne SAR via parametric sparse representation," IEEE Trans. Geosci. Remote Sensing, Vol. 55, No. 1, 551-562, Jan. 2017.
doi:10.1109/TGRS.2016.2611522

14. Gu, F.-F., Q. Zhang, L. Chi, Y.-A. Chen, and S. Li, "A novel motion compensating method for MIMO-SAR imaging based on compressed sensing," IEEE Sensors J., Vol. 15, No. 4, 2157-2165, Apr. 2015.
doi:10.1109/JSEN.2014.2371451

15. Fornaro, G., "Flight path deviations in airborne SAR: Analysis and compensation," IEEE Trans. Aerosp. Electron. Syst., Vol. 35, No. 3, 997-1009, Jul. 1999.
doi:10.1109/7.784069

16. Fornaro, G., G. Franceschetti, and S. Perna, "On center-beam approximation in SAR motion compensation," IEEE Geosci. Remote Sensing Lett., Vol. 3, No. 2, 276-279, Apr. 2006.
doi:10.1109/LGRS.2005.863391

17. Zhang, L., Z. Qiao, M.-D. Xing, L. Yang, and Z. Bao, "A robust motion compensation approach for UAV SAR imagery," IEEE Trans. Geosci. Remote Sensing, Vol. 50, No. 8, 3202-3218, Aug. 2012.
doi:10.1109/TGRS.2011.2180392