1. Van Bladel, J. G., Electromagnetic Fields, 2nd Ed., IEEE Press, 2007.
doi:10.1002/047012458X
2. Balanis, C. A., Antenna Theory, 3rd Ed., John Wiley & Sons, 2005.
3. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross-Section Handbook, Vol. 1 and 2, Plenum Press, 1970.
doi:10.1007/978-1-4899-5324-7
4. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, SciTech Publishing Inc., 2004.
5. Gibson, W. C., The Method of Moments in Electromagnetics, Vol. 1, Chapman & Hall/CRC, 2008.
6. Davidson, D. B., Computational Electromagnetics for RF and Microwave Engineering, Cambridge University Press, 2005.
doi:10.1017/CBO9780511611575
7. Bondeson, A., T. Rylander, and P. Ingelstrom, Computational Electromagnetics, Springer-Verlag, 2005.
8. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propag. Mag., Vol. 35, No. 3, 7-12, 1993.
doi:10.1109/74.250128 Google Scholar
9. Pan, X.-M., L. Cai, and X.-Q. Sheng, "An efficient high order multilevel fast multipole algorithm for electromagnetic scattering analysis," Progress In Electromagnetics Research, Vol. 126, 85-100, 2012.
doi:10.2528/PIER12020203 Google Scholar
10. Ergul, O. and L. Gurel, The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-scale Computational Electromagnetics Problems, John Wiley & Sons, 2014.
doi:10.1002/9781118844977
11. Mittra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206 Google Scholar
12. Maaskant, R., R. Mittra, and A. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3440-3451, 2008.
doi:10.1109/TAP.2008.2005471 Google Scholar
13. Garcia, E., C. Delgado, L. P. Lozano, I. Gonzalez-Diego, and M. F. Catedra, "An efficient hybrid-scheme combining the characteristic basis function method and the multilevel fast multipole algorithm for solving bistatic rcs and radiation problems," Progress In Electromagnetics Research B, Vol. 34, 327-343, 2011.
doi:10.2528/PIERB11062204 Google Scholar
14. Smith, D. G., Field Guide to Physical Optics, SPIE Press, 2013.
doi:10.1117/3.883971
15. Jin, J. M., Theory and Computation of Electromagnetic Fields, Wiley, 2011.
16. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Elsevier, 2013.
17. Akhmanov, S. A. and S. Y. Nikitin, Physical Optics, Clarendon Press, 1997.
18. Stavroudis, O. N., The Mathematics of Geometrical and Physical Optics: The k-function and Its Ramifications, John Wiley & Sons, 2006.
doi:10.1002/3527608176
19. Ferrando-Bataller, M., F. V. Bondıa, and A. Valero-Nogueira, "Fast physical optics for smooth surfaces," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-3, 2010. Google Scholar
20. Ufimtsev, P. Y., "Method of edge waves in the physical theory of diffraction,", DTIC Document, Tech. Rep., 1971. Google Scholar
21. Mitzner, K., "Incremental length diffraction coefficients,", DTIC Document, Tech. Rep., 1974. Google Scholar
22. Umul, Y. Z., "Modified theory of physical optics," Opt. Express, Vol. 12, No. 20, 4959-4972, 2004.
doi:10.1364/OPEX.12.004959 Google Scholar
23. Ufimtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, John Wiley & Sons, 2007.
doi:10.1002/0470109017
24. Shijo, T., L. Rodriguez, and M. Ando, "The modified surface-normal vectors in the physical optics," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3714-3722, 2008.
doi:10.1109/TAP.2008.2007276 Google Scholar
25. Ericsson, A., D. Sjoberg, C. Larsson, and T. Martin, "Scattering for doubly curved functional surfaces and corresponding planar designs," 2016 10th European Conference on IEEE Antennas and Propagation (EuCAP), 1-2, 2016. Google Scholar
26. Ericsson, A., D. Sjoberg, C. Larsson, and T. Martin, "Scattering from a multilayered sphere — Applications to electromagnetic absorbers on double curved surfaces,", Tech. Rep. LUTEDX/(TEAT-7249)/1–32/(2017), Department of Electrical and Information Technology, Lund University, P. O. Box 118, S-221 00 Lund, Sweden, 2017. Google Scholar
27. Sjoberg, D. and A. Ericsson, "Computation of radar cross section using the physical optics approximation,", Tech. Rep. LUTEDX/(TEAT-7255)/1–16/(2017), Department of Electrical and Information Technology, Lund University, P. O. Box 118, S-221 00 Lund, Sweden, 2017. Google Scholar
28. Ericsson, A., D. Sjoberg, C. Larsson, and T. Martin, "Approximative computation methods for monostatic scattering from axially symmetric objects,", Tech. Rep. LUTEDX/(TEAT-7256)/1–36/(2017), Department of Electrical and Information Technology, Lund University, P. O. Box 118, S-221 00 Lund, Sweden, 2017. Google Scholar
29. Jones, E., T. Oliphant, P. Peterson, et al. "SciPy: Open source scientific tools for Python,", 2001, accessed 2017-06-07, [online], available: http://www.scipy.org/. Google Scholar
30. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, 116-130, 1962.
doi:10.1364/JOSA.52.000116 Google Scholar
31. Foster, P. R., "The region of application in GTD/UTD," 1996 Third International Conference on Computation in Electromagnetics (Conf. Publ. No. 420), 382-386, 1996. Google Scholar
32. Ericsson, A. and D. Sjoberg, "Design and analysis of a multilayer meander line circular polarization selective structure," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4089-4101, 2017.
doi:10.1109/TAP.2017.2710207 Google Scholar
33. Ericsson, A., J. Lundgren, and D. Sjoberg, "Experimental characterization of circular polarization selective structures using linearly single-polarized antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4239-4249, 2017.
doi:10.1109/TAP.2017.2713812 Google Scholar