Vol. 80
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-03-30
Electromagnetic Signatures of Human Skin in the Millimeter Wave Band 80-100 GHz
By
Progress In Electromagnetics Research B, Vol. 80, 79-99, 2018
Abstract
Due to changes in global security requirements attention is turning to new means by which anomalies on the human body might be identified. For security screening systems operating in the millimeter wave band anomalies can be identified by measuring the emissivities of subjects. As the interaction of millimeter waves with the human body is only a fraction of a millimeter into the skin and clothing has a small, but known effect, precise measurement of the emission and reflection of this radiation will allow comparisons with the norm for that region of the body and person category. A technique to measure the human skin emissivity in vivo over the frequency band 80 GHz to 100 GHz is developed and described. The mean emissivity values of the skin of a sample of 60 healthy participants (36 males and 24 females) measured using a 90 GHz calibrated radiometer was found to range from 0.17±0.005 to 0.68±0.005. The lower values of emissivity are a result of measuring particularly thin skin on the inner wrist, volar side of the forearm, and back of hand, whereas higher values of emissivity are results of measuring thick skin on the outer wrist, dorsal surface of the forearm, and palm of hand. The mean differences in the emissivity between Asian and European male participants were calculated to be in the range of 0.04 to 0.11 over all measurement locations. Experimental measurements of the emissivity for male and female participants having normal and high body mass index indicate that the mean differences in the emissivity are in the range of 0.05 to 0.15 for all measurement locations. These results show the quantitative variations in the skin emissivity between locations, gender, and individuals. The mean differences in the emissivity values between dry and wet skin on the palm of hand and back of hand regions were found to be 0.143 and 0.066 respectively. These results confirm that radiometry can, as a non-contact method, identify surfaces attached to the human skin in tens of seconds. These results indicate a route to machine anomaly detection that may increase the through-put speed, the detection probabilities and reduce the false alarm rates in security screening portals.
Citation
Amani Yousef Owda, Neil Salmon, and Nacer Ddine Rezgui, "Electromagnetic Signatures of Human Skin in the Millimeter Wave Band 80-100 GHz," Progress In Electromagnetics Research B, Vol. 80, 79-99, 2018.
doi:10.2528/PIERB17120403
References

1. Zheng, C., X. Yao, A. Hu, and J. Miao, "A passive millimeter-wave imager used for concealed weapon detection," Progress In Electromagnetics Research B, Vol. 46, 379-397, 2013.
doi:10.2528/PIERB12101505        Google Scholar

2. Yang, B.-H., Z.-P. Li, C. Zheng, J. Zhang, X.-X. Yao, A.-Y. Hu, and J.-G. Miao, "Design of a passive millimeter-wave imager used for concealed weapon detection BHU-2D-U," WSEAS Transactions on Circuits and Systems, Vol. 13, 94-103, 2014.        Google Scholar

3. Appleby, R., "Passive millimetre-wave imaging and how it differs from terahertz imaging," Philos. Trans. A Math. Phys. Eng. Sci., Vol. 362, 379-392, 2004, doi:10.1098/rsta.2003.1323.
doi:10.1098/rsta.2003.1323        Google Scholar

4. Harmer, S. W., N. Bowring, D. Andrews, N. D. Rezgui, M. Southgate, and S. Smith, "A review of nonimaging stand-off concealed threat detection with millimeter-wave radar," IEEE Microwave Magazine, Vol. 13, 160-167, 2012, doi:10.1109/MMM.2011.2174125.
doi:10.1109/MMM.2011.2174125        Google Scholar

5. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Cylindrical millimeter-wave imaging technique for concealed weapon detection," Proc. SPIE, Vol. 3240, 0000, 1998, doi:10.1117/12.300061.        Google Scholar

6. Salmon, N. A., "Experimental results and simulations from aperture synthesis three-dimensional radiometric imaging," Proc. SPIE, Vol. 9993, 99930B, 2016, doi:10.1117/12.2231696.
doi:10.1117/12.2231696        Google Scholar

7. Salmon, N. A., "3-D radiometric aperture synthesis imaging," IEEE Transactions on Microwave Theory and Technology, Vol. 63, 3579-3587, 2015, doi:10.1109/TMTT.2015.2481413.
doi:10.1109/TMTT.2015.2481413        Google Scholar

8. Rezgui, N-D., D. A. Andrews, and N. J. Bowring, "Ultra wide band 3D microwave imaging scanner for the detection of concealed weapons," Proc. SPIE, Vol. 9651, 965108, 2015, doi:10.1117/12.2197581.
doi:10.1117/12.2197581        Google Scholar

9. Blackhurst, E., N. Salmon, and M. Southgate, "Full polarimetric millimetre wave radar for stand-off security screening," Proc. SPIE, Vol. 10439, 1043906, 2017, doi:10.1117/12.2282564.        Google Scholar

10. Ahmed, S. S., A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L.-P. Schmidt, "Advanced microwave imaging," IEEE Microwave Magazine, Vol. 13, 26-43, 2012, doi:10.1109/MMM.2012.2205772.
doi:10.1109/MMM.2012.2205772        Google Scholar

11. Ahmed, S. S., O. Ostwald, and L.-P. Schmidt, "Automatic detection of concealed dielectric objects for personnel imaging," Proc. IEEE MTT-S International Microwave Workshop on Wireless Sensing, Local Positioning, and RFID, 1-4, 2009, doi:10.1109/IMWS2.2009.5307899.        Google Scholar

12. Luukanen, A., R. Appleby, M. Kemp, and N. Salmon, Millimeter-Wave and Terahertz Imaging in Security Applications, Vol. 171, Springer, 2012.

13. Salmon, N. A., "Extended sources near-field processing of experimental aperture synthesis data and application of the Gerchberg method for enhancing radiometric three-dimensional millimetre-wave images in security," Proc. SPIE, Vol. 10439, 1043905, 2017, doi:10.1117/12.2282563.        Google Scholar

14. Salmon, N. A., J. R. Borrill, and D. G. Glee, "Absolute temperature stability of passive imaging radiometers," Proc. SPIE, Vol. 3064, 110-120, 1997, doi:10.1117/12.277072.
doi:10.1117/12.277072        Google Scholar

15. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons, 2011.

16. Bardati, F. and D. Solimini, "Radiometric sensing of biological layered media," Radio Science, Vol. 18, 1393-1401, 1983, doi:10.1029/RS018i006p01393.
doi:10.1029/RS018i006p01393        Google Scholar

17. Owda, A. Y., N. A. Salmon, N.-D. Rezgui, and S. Shylo, "Millimetre wave radiometers for medical diagnostics of human ski," Proc. IEEE Sensors, 1-3, 2017.        Google Scholar

18. Harmer, S. W., S. Shylo, M. Shah, N. J. Bowring, and A. Y. Owda, "On the feasibility of assessing burn wound healing without removal of dressings using radiometric millimetre-wave sensing," Progress In Electromagnetics Research M, Vol. 45, 173-183, 2016.
doi:10.2528/PIERM15110503        Google Scholar

19. Owda, A. Y., N. Salmon, S. W. Harmer, S. Shylo, N. J. Bowring, N. D. Rezgui, and M. Shah, "Millimeter-wave emissivity as a metric for the non-contact diagnosis of human skin conditions," Bioelectromagnetics, Vol. 38, 559-569, 2017, doi:10.1002/bem.22074.
doi:10.1002/bem.22074        Google Scholar

20. Feldman, Y., A. Puzenko, P. Ben Ishai, A. Caduff, and A. J. Agranat, "Human skin as arrays of helical antennas in the millimeter and submillimeter wave range," Physical Review Letters, Vol. 100, 128102, 2008, doi:https://doi.org/10.1103/PhysRevLett.100.128102.
doi:10.1103/PhysRevLett.100.128102        Google Scholar

21. Feldman, Y., A. Puzenko, P. Ben Ishai, A. Caduff, I. Davidovich, F. Sakran, and A. J. Agranat, "The electromagnetic response of human skin in the millimetre and submillimetre wave range," Physics in Medicine & Biology, Vol. 54, 3341-3363, 2009, doi:https://doi.org/10.1088/00319155/54/11/005.
doi:10.1088/0031-9155/54/11/005        Google Scholar

22. Smulders, P. M. F., "Analysis of human skin tissue by millimeter-wave reflectometry," Skin Research and Technology, Vol. 19, e209-e216, 2012, doi:10.1111/j.1600-0846.2012.00629.x.
doi:10.1111/j.1600-0846.2012.00629.x        Google Scholar

23. Owda, A. Y., N.-D. Rezgui, and N. A. Salmon, "Signatures of human skin in the millimetre wave band (80–100) GH," Proc. SPIE, Vol. 10439, 1043904, 2017, doi:10.1117/12.2292046.        Google Scholar

24. Kuchler, N., D. D. Turner, U. Lohnert, and S. Crewell, "Calibrating ground-based microwave radiometers: Uncertainty and drifts," Radio Science, Vol. 51, 311-327, 2016, doi:10.1002/2015RS005826.
doi:10.1002/2015RS005826        Google Scholar

25. Salmon, N. A., L. Kirkham, and P. N. Wilkinson, "Characterisation and calibration of a large aperture (1.6 m) ka-band indoor passive millimeter wave security screening imager," Proc. SPIE, Vol. 8544, 854408, 2012, doi:10.1117/12.999278.
doi:10.1117/12.999278        Google Scholar

26. Lee, Y. and K. Hwang, "Skin thickness of Korean adults," Surgical and Radiologic Anatomy, Vol. 24, 183-189, 2002, doi:10.1007/s00276-002-0034-5.
doi:10.1007/s00276-002-0034-5        Google Scholar

27. Gray, H., Anatomy of the Human Body, Lea & Febiger, 1981.

28. McGrath, J. A. and J. Uitto, "Rook's Textbook of Dermatology," Wiley-Blackwell, 2016.        Google Scholar

29. Zhadobov, M., N. Chahat, R. Sauleau, C. L. Quement, and Y. L. Drean, "Millimeterwave interactions with the human body: State of knowledge and recent advances," International Journal of Microwave and Wireless Technologies, Vol. 3, 237-247, 2011, doi:https://doi.org/10.1017/S1759078711000122.
doi:10.1017/S1759078711000122        Google Scholar

30. Alekseev, S. I., I. Szabo, and M. C. Ziskin, "Millimeter wave reflectivity used for measurement of skin hydration with different moisturizers," Skin Research and Technology, Vol. 14, 390-396, 2008, doi:10.1111/j.1600-0846.2008.00319.x.
doi:10.1111/j.1600-0846.2008.00319.x        Google Scholar

31. Giacomoni, P. U., T. Mammone, and M. Teri, "Gender-linked differences in human skin," Journal of Dermatological Science, Vol. 55, 144-149, 2009, doi: https://doi.org/10.1016/j.jdermsci.2009.06.001.
doi:10.1016/j.jdermsci.2009.06.001        Google Scholar

32. Sandby-Møller, J., T. Poulsen, and H. C. Wulf, "Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits," Acta Derm Venereol, Vol. 83, 410-413, 2003, doi:10.1080/00015550310015419.
doi:10.1080/00015550310015419        Google Scholar

33. Shuster, S., M. M. Black, and E. Mcvitie, "The influence of age and sex on skin thickness, skin collagen and density," Br. J. Dermatol., Vol. 93, 639-643, 1975, doi:10.1111/j.1365-2133.1975.tb05113.x.
doi:10.1111/j.1365-2133.1975.tb05113.x        Google Scholar

34. Rawlings, A. V., "Ethnic skin types: Are there differences in skin structure and function?," International Journal of Cosmetic Science, Vol. 28, 79-93, 2006, doi:10.1111/j.1467-2494.2006.00302.x.
doi:10.1111/j.1467-2494.2006.00302.x        Google Scholar

35. Sugino, K., G. Imokawa, and H. I. Maibach, "Ethnic difference of varied stratum corneum function in relation to stratum corneum lipids," Journal of Dermatological Science, Vol. 6, 108, 1993, doi: https://doi.org/10.1016/0923-1811(93)91343-S.
doi:10.1016/0923-1811(93)91343-S        Google Scholar

36. Hillebrand, G. G., M. J. Levine, and K. Shigaki-Miyamoto, "The age dependent changes in skin condition in African Americans, Asian Indians, Caucasians, East Asians & Latinos," IFSCC Magazine, Vol. 4, 259-266, 2001.        Google Scholar

37. Williams, G. F., "Microwave emissivity measurements of bubbles and foam," IEEE Trans. Geosci. Elect., Vol. 9, 221-224, 1971, doi: 10.1109/TGE.1971.271504.
doi:10.1109/TGE.1971.271504        Google Scholar

38. Rose, L. A., W. E. Asher, S. C. Reising, P. W. Gaiser, K. M. St Germain, D. J. Dowgiallo, K. A. Horgan, G. Farquharson, and E. J. Knapp, "Radiometric measurements of the microwave emissivity of foam," IEEE Trans. Geosci. Remote Sens., Vol. 40, 2619-2625, 2002, doi: 10.1109/TGRS.2002.807006.
doi:10.1109/TGRS.2002.807006        Google Scholar

39. Derraik, J. G. B., M. Rademaker, W. S. Cutfield, T. E. Pinto, S. Tregurtha, A. Faherty, J. M. Peart, P. L. Drury, and P. L. Hofm, "Effects of age, gender, BMI, and anatomical site on skin thickness in children and adults with diabetes," PLoS ONE, Vol. 9, e86637, 2014, doi: https://doi.org/10.1371/journal.pone.0086637.
doi:10.1371/journal.pone.0086637        Google Scholar

40. Jackson, A. S., P. R. Stanforth, J. Gagnon, T. Rankinen, A. S. Leon, D. C. Rao, J. S. Skinner, C. Bouchard, and J. H. Wilmore, "The effect of sex, age and race on estimating percentage body fat from body mass index: The Heritage Family Study," International Journal of Obesity, Vol. 26, 789-796, 2002, doi:10.1038/sj.ijo.0802006.
doi:10.1038/sj.ijo.0802006        Google Scholar

41. Alekseev, S. I. and M. C. Ziskin, "Human skin permittivity determined by millimeter wave reflection measurements," Bioelectromagnetics, Vol. 28, 331-339, 2007, doi: 10.1002/bem.20308.
doi:10.1002/bem.20308        Google Scholar

42. Egot-Lemaire, S. J.-P. and M. C. Ziskin, "Dielectric properties of human skin at an acupuncture point in the 50–75 GHz frequency range. A pilot study," Bioelectromagnetics, Vol. 32, 360-366, 2011, doi: 10.1002/bem.20650.
doi:10.1002/bem.20650        Google Scholar

43. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003        Google Scholar

44. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002        Google Scholar

45. Wallace, V. P., J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, "Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo," British Journal Dermatology, Vol. 151, 424-432, 2004, doi:10.1111/j.1365-2133.2004.06129.x.
doi:10.1111/j.1365-2133.2004.06129.x        Google Scholar