1. Grzesik, J., "Field matching through volume suppression," IEE Proceedings, Part H (Antennas and Optics), Vol. 127, No. 1, 20-26, Feb. 1980. Google Scholar
2. Sommerfeld, A., "Mathematische theorie der diffraction," Mathematische Annalen, Vol. 16, 317-374, 1896.
doi:10.1007/BF01447273 Google Scholar
3. MacDonald, H. M., "Appendix D," Electric Waves, 186-198, Cambridge University Press, Cambridge, UK, 1902. Google Scholar
4. Sommerfeld, A., P. Frank, and R. von Mises, eds., "Theorie der Beugung," Die Differential- und Integralgleichungen der Mechanik und Physik, Zweiter physikalische teil, Chap. 20, 808{830, Friedrich Vieweg & Sohn, Braunchshweig, Deutschland, 1935 (Mary S. Rosenberg, WWII publisher, New York, NY, USA, 1943). Google Scholar
5. Sommerfeld, A., Optics, Lectures on Theoretical Physics, Vol. IV, 249-272, Academic Press, New York, NY, USA, Translated from the German by O. Laporte and P. A. Moldauer, 1954.
6. Pauli, W., "On asymptotic series for functions in the theory of diffraction of light," Phys. Rev., Vol. 54, 924-931, Dec. 1, 1938. Google Scholar
7. Landau, L. D. and E. M. Lifshitz, "Electrodynamics of continuous media," Course of Theoretical Physics, Vol. 8, 304-312, Addison-Wesley Publishing Company, Reading, Mass., USA, Translated from the Russian by J. B. Sykes and J. S. Bell, 1960. Google Scholar
8. Baker, B. B. and E. T. Copson, "`Sommerfeld's theory of diffraction,' and `Diffraction by a plane screen'," The Mathematical Theory of Huygens Principle, Chap. 4, 124-152, and Chap. 5, 153-189, Clarendon Press, Oxford, UK, 1949. Google Scholar
9. Stratton, J. A., Electromagnetic Theory, 364-369, McGraw-Hill Book Company, New York, NY, USA, 1941.
10. Mittra, R. and S. W. Lee, Analytical Techniques in the Theory of Guided Waves, (preferred Riemann sheet) 20{23, (Wiener-Hopf) 82ff, (Jones method) 97ff, The MacMillan Company, New York, NY, USA, 1971.
11. Watson, G. N., A Treatise on the Theory of Bessel Functions, 2nd Ed., (formulae (2) and (3)) 405, Cambridge University Press, Cambridge, UK, 1966.
12. Clemmow, P. C., "Some extensions of the method of steepest descents," QJMAM, Vol. 3, No. 2, 924-931, 1950. Google Scholar
13. Clemmow, P. C., The Plane Wave Spectrum Representation of Electromagnetic Fields, 43-58, (with particular attention to 56{58), IEEE, Inc., New York, NY, USA, 1996.
doi:10.1109/9780470546598
14. Ciarkowski, A., J. Boersma, and R. Mittra, "Plane-wave diffraction by a wedge --- A spectral domain approach," IEEE Trans. Antennas Propag., Vol. 32, No. 1, 20-29, Jan. 1, 1984.
doi:10.1109/TAP.1984.1143190 Google Scholar
15. Haciveliogliu, F., L. Sevgi, and P. Y. Umtsev, "Electromagnetic wave scattering from a wedge with perfectly re ecting boundaries: Analysis of asymptotic techniques," IEEE Antennas Propag. Mag., Vol. 53, No. 3, 232-253, Jun. 2011.
doi:10.1109/MAP.2011.6028472 Google Scholar
16. Umtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, John Wiley and Sons, Inc., Hoboken, NJ, USA, 2007.
doi:10.1002/0470109017
17. Bateman, H., "Diffraction problems," Partial Differential Equations of Mathematical Physics, Chap. 11, 476{490, Dover Publications, New York, NY, USA, 1959. Google Scholar
18. Rubinowicz, A., "Beugung an einer Halbebene," Die Beugungswelle in der Kirchhoffschen Theorie der Beugung, Chap. 4, 125-149, Panstwowe Wydawnictwo Naukowe, Warsaw, Poland, 1957. Google Scholar
19. Lamb, H., "On Sommerfeld's diffraction problem, and on re ection by a parabolic mirror," Proc. London Math. Soc., Vol. 4, 190ff, 1906. Google Scholar
20. Lamb, S. H., Hydrodynamics, 6th Ed., Sec. 308, 538-541, Dover Publications, New York, NY, USA, 1945.
21. MacDonald, K. T., "Sommerfeld's diffraction problem," Physics Examples, 1-18, Dept. of Physics, Princeton University, Princeton, NJ, USA, Jun. 25, 2014. Google Scholar
22. Noble, B., Methods Based on the Wiener-Hopf Technique, Pergamon Press, New York, NY, USA, 1958.
23. Schwinger, J., L. L. De Raad, Jr., K. A. Milton, and W.-Y. Tsai, "Exact solution for current," Classical Electrodynamics, Sec. 48, 512{516, Perseus Books, Reading, Mass., USA, 1998. Google Scholar
24. Born, M. and E. Wolf, "Rigorous diffraction theory," Principles of Optics, 7th (expanded) Edition, Chap. 11 (contributed by P. C. Clemmow), 633{672, Cambridge University Press, Cambridge, UK, 2003. Google Scholar
25. Carrier, G. F., M. Krook, and C. E. Pearson, "Dual integral equations," Functions of a Complex Variable, Sec. 8-5, 399-404, McGraw-Hill Book Company, New York, NY, USA, 1966. Google Scholar
26. Friedlander, F. G., "The diffraction of a pulse by a wedge," Sound Pulses, Chap. 5, 108-146, Cambridge University Press, Cambridge, UK, 1958. Google Scholar
27. Grinberg, G. A., Selected Problems in the Mathematical Theory of Electric and Magnetic Phenomena, Chap. 22, USSR Academy of Sciences, Moscow, 1948.
28. Sneddon, I. N., "The Kontorovich-Lebedev transform," The Use of Integral Transforms, Chap. 6, 353-368, McGraw-Hill Book Company, New York, NY, USA, 1972. Google Scholar
29. Nikoskinen, K. I. and I. V. Lindell, "Image solution for poisson's equation in wedge geometry," IEEE Trans. Antennas Propag., Vol. 43, No. 2, 179-187, Feb. 1995.
doi:10.1109/8.366380 Google Scholar
30. Scharstein, R. W., "Green's function for the harmonic potential of the three-dimensional wedge transmission problem," IEEE Trans. Antenn Propag., Vol. 52, No. 2, 452-460, Feb. 2004.
doi:10.1109/TAP.2004.823949 Google Scholar
31. "Session 6, scattering by wedges I," Symposium Digest, Volume Two, IEEE AP-S International Symposium and USNC/URSI National Radio Science Meeting, 1067ff., Newport Beach, CA, USA, Jun. 18-Jun. 23, 1995. Google Scholar
32. "Session 9, scattering by wedges II," Symposium Digest, Volume Two, IEEE AP-S International Symposium and USNC/URSI National Radio Science Meeting, 1347ff., Newport Beach, CA, USA, Jun. 18-Jun. 23, 1995. Google Scholar
33. Lyalinov, M. A. and N. Y. Zhu, "Scattering of wedges and cones by impedance boundary conditions," The Mario Boella Series on Electromagnetism in Information and Communication, SciTech Publishing, The Institution of Engineering and Technology, Edison, NJ, 2013. Google Scholar
34. Daniele, V. G. and G. Lombardi, "Wiener-Hopf solution for impenetrable wedges at skew incidence," IEEE Trans. Antennas Propag., Vol. 54, No. 9, 2472-2485, Sep. 2006.
doi:10.1109/TAP.2006.880723 Google Scholar
35. Daniele, V. G. and R. S. Zich, "The Wiener-Hopf method in electromagnetics," The Mario Boella Series on Electromagnetism in Information and Communication,The Mario Boella Series on Electromagnetism in Information and Communication, SciTech Publishing, The Institution of Engineering and Technology, Edison, NJ, 2014. Google Scholar