Vol. 82
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-10-04
Multilayer Structural Diagnosis with Quasi-3D Microwave Imaging Using Ultrawideband Radio Frequency Noiselet Waveforms
By
Progress In Electromagnetics Research B, Vol. 82, 73-92, 2018
Abstract
Microwave radar imaging is increasingly being used in infrastructure monitoring applications due to its low cost, rapid measurement time, non-contact characteristics, and ability to penetrate nonmetallic media. An appropriate waveform design must be designed to obtain accurate information on the targets observed or the features being probed. Ultrawideband (UWB) radio frequency (RF) noiselets are excellent candidate waveforms in view of their multiresolution and interference rejection features. In this paper, a waveform optimization approach for UWB noiselet waveforms is described to achieve high peak-to-sidelobe ratio (PSLR) to enhance imaging capabilities. Synthetic aperture radar (SAR) scanning for microwave imaging is introduced after analyzing the essential microwave approaches for the multilayered structure. Image reconstruction using SAR scanning is performed for various multilayered structures and quasi-3D images of these structures are presented for nondestructive testing and evaluation (NDT&E) applications.
Citation
Tae Hee Kim, and Ram M. Narayanan, "Multilayer Structural Diagnosis with Quasi-3D Microwave Imaging Using Ultrawideband Radio Frequency Noiselet Waveforms," Progress In Electromagnetics Research B, Vol. 82, 73-92, 2018.
doi:10.2528/PIERB18082908
References

1. Narayanan, R. M., "Through-wall radar imaging using UWB noise waveforms," J. Franklin Inst., Vol. 345, No. 6, 659-678, 2008.
doi:10.1016/j.jfranklin.2008.03.004

2. Kulpa, K., K. Lukin, W. Miceli, and T. Thayaparan, "Signal processing in noise radar technology," IET Radar Sonar Navig., Vol. 2, No. 4, 229-232, 2008.
doi:10.1049/iet-rsn:20089017

3. Dawood, M. and R. M. Narayanan, "Multipath and ground clutter analysis for a UWB noise radar," IEEE Trans. Aerosp. Electron. Syst., Vol. 38, No. 3, 838-853, 2002.
doi:10.1109/TAES.2002.1039403

4. Chen, P. H., M. C. Shastry, C. P. Lai, and R. M. Narayanan, "A portable real-time digital noise radar system for through-the-wall imaging," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 10, 4123-4134, 2012.
doi:10.1109/TGRS.2012.2188411

5. Tarchi, D., K. Lukin, J. Fortuny-Guasch, A. Mogyla, P. Vyplavin, and A. Sieber, "SAR imaging with noise radar," IEEE Trans. Aerosp. Electron. Syst., Vol. 46, No. 3, 1214-1225, 2010.
doi:10.1109/TAES.2010.5545184

6. Kim, T. H. and R. M. Narayanan, "Wideband radio frequency noiselet waveforms for multiresolution nondestructive testing of multilayered structures," Progress In Electromagnetics Research B, Vol. 81, 1-23, 2018.
doi:10.2528/PIERB18033007

7. Coifman, R., F. Geshwind, and Y. Meyer, "Noiselets," Appl. Comput. Harmon. Anal., Vol. 10, No. 1, 27-44, 2001.
doi:10.1006/acha.2000.0313

8. Candes, E. and J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse Prob., Vol. 23, 969-985, 2007.
doi:10.1088/0266-5611/23/3/008

9. Keep, D. N., "Frequency-modulation radar for use in the mercantile marine," Proc. IEE --- Part B: Radio Electr. Electron., Vol. 103, No. 10, 519-523, 1956.
doi:10.1049/pi-b-1.1956.0203

10. Narayanan, R. M., X. Xu, and J. A. Henning, "Radar penetration imaging using ultra-wideband (UWB) random noise waveforms," IET Radar Sonar Navig., Vol. 151, No. 3, 143-148, 2004.
doi:10.1049/ip-rsn:20040418

11. Sivadas, N. A. and S. S. Mohammed, "A joint technique for sidelobe suppression and peak-to-average power ratio reduction in non-contiguous OFDM-based cognitive radio networks," Int. J. Electron., Vol. 104, No. 2, 190-203, 2017.
doi:10.1080/00207217.2016.1196747

12. Navagato, M. D. and R. M. Narayanan, "Microwave imaging using ultra-wideband noise waveforms for nondestructive testing of multilayer structures," Proc. SPIE Conf. on Radar Sensor Technology XXII, 1063314-1-1063314-13, Orlando, FL, USA, Apr. 2018.

13. Bossi, R. H. and G. E. Georgeson, "Nondestructive testing of composites," Mater. Eval., Vol. 76, No. 8, 1049-1060, 2018.

14. Sato, N., M. Hojo, and M. Nishikawa, "Intralaminar fatigue crack growth properties of conventional and interlayer toughened CFRP laminate under mode I loading," Composites Part A, Vol. 68, 202-211, 2015.
doi:10.1016/j.compositesa.2014.09.031

15. Agarwal, B. D. and L. J. Broutman, Analysis and Performance of Fiber Composites, John Wiley & Sons, New York, NY, USA, 1990.

16. Garrett, K. W. and J. E. Bailey, "Multiple transverse fracture in 90◦ cross-ply laminates of a glass fiber-reinforced polyester," J. Mater. Sci., Vol. 12, No. 1, 157-168, 1977.
doi:10.1007/BF00738481

17. Karandikar, P. and T.-W. Chou, "Characterization and modeling of microcracking and elastic-moduli changes in Nicalon CAS composites," Compos. Sci. Technol., Vol. 46, No. 3, 253-263, 1993.
doi:10.1016/0266-3538(93)90159-E

18. Zhong, Y. and S. C. Joshi, "Initiation of structural defects in carbon fiber reinforced polymer composites under hygrothermal environments," J. Compos. Mater., Vol. 50, No. 8, 1085-1097, 2016.
doi:10.1177/0021998315587133

19. Narayanan, R. M. and R. James, "Microwave nondestructive testing of galvanic corrosion and impact damage in carbon fiber reinforced polymer composites," Int. J. Microwaves Appl., Vol. 7, No. 1, 1-15, 2018.
doi:10.30534/ijma/2018/01712018

20. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., John Wiley & Sons, New York, NY, USA, 2012.

21. Richards, M. A., Fundamentals of Radar Signal Processing, McGraw-Hill, New York, NY, USA, 2005.

22. Dehmollaian, M. and K. Sarabandi, "Refocusing through building walls using synthetic aperture radar," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 6, 1589-1599, Jun. 2008.
doi:10.1109/TGRS.2008.916212

23. Stolt, R. H., "Migration by Fourier transform," Geophys., Vol. 43, No. 1, 23-48, 1978.
doi:10.1190/1.1440826

24. Lopez-Sanchez, J. M. and J. Fortuny-Guasch, "3-D radar imaging using range migration techniques," IEEE Trans. Antennas Propag., Vol. 48, No. 5, 728-737, 2000.
doi:10.1109/8.855491

25. Zoughi, R. and B. Zonnefeld, "Permittivity characteristics of kevlar, carbon composites, E-glass, and rubber (33% carbon) at X-band (8-12 GHz)," Review of Progress in Quantitative Nondestructive Evaluation, Vol. 10B, Chapter 38, 1431-1436, Plenum Press, New York, NY, USA, 1991.

26. Seo, I. L., W. S. Chin, and D. G. Lee, "Characterization of electromagnetic properties of polymeric composite materials with free space method," Compos. Struct., Vol. 66, 533-542, 2004.
doi:10.1016/j.compstruct.2004.04.076

27. Tereshchenko, O. V., F. J. K. Buesink, and F. B. J. Leferink, "Measurement of complex permittivity of composite materials using waveguide method," Proc. 10th International Symp. on Electromagnetic Compatibility (EMC Europe 2011), 52-56, York, UK, Sep. 2011.

28. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., Vol. 34, No. 3, 276-280, 1986.
doi:10.1109/TAP.1986.1143830

29. Shrestha, S. M. and I. Arai, "Signal processing of ground penetrating radar using spectral estimation techniques to estimate the position of buried targets," EURASIP J. Appl. Signal Process., Vol. 2003, No. 12, 1198-1209, 2003.

30. Iakovleva, E., S. Gdoura, D. Lesselier, and G. Perrusson, "Multistatic response matrix of a 3-D inclusion in half space and MUSIC imaging," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 2598-2609, 2007.
doi:10.1109/TAP.2007.904103

31. Agarwal, K. and X. Chen, "Applicability of MUSIC-type imaging in two-dimensional electromagnetic inverse problems," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3217-3223, 2008.
doi:10.1109/TAP.2008.929434

32. Abou-Khousa, M. A., D. L. Simms, S. Kharkovsky, and R. Zoughi, "High-resolution short-range wideband FMCW radar measurements based on MUSIC algorithm," Proc. 2009 IEEE International Instrumentation and Measurement Technology Conf. (I2MTC 2009), Singapore, May 2009, DOI: 10.1109/IMTC.2009.5168500.

33. Shirmehenji, F., A. Zeidaabadi-Nezhad, and Z. H. Firouzeh, "Object locating of electromagnetic inclusions in anisotropic permeable background using MUSIC algorithm," Progress In Electromagnetics Research C, Vol. 85, 77-89, 2018.
doi:10.2528/PIERC18041908