1. Narayanan, R. M., "Through-wall radar imaging using UWB noise waveforms," J. Franklin Inst., Vol. 345, No. 6, 659-678, 2008.
doi:10.1016/j.jfranklin.2008.03.004 Google Scholar
2. Kulpa, K., K. Lukin, W. Miceli, and T. Thayaparan, "Signal processing in noise radar technology," IET Radar Sonar Navig., Vol. 2, No. 4, 229-232, 2008.
doi:10.1049/iet-rsn:20089017 Google Scholar
3. Dawood, M. and R. M. Narayanan, "Multipath and ground clutter analysis for a UWB noise radar," IEEE Trans. Aerosp. Electron. Syst., Vol. 38, No. 3, 838-853, 2002.
doi:10.1109/TAES.2002.1039403 Google Scholar
4. Chen, P. H., M. C. Shastry, C. P. Lai, and R. M. Narayanan, "A portable real-time digital noise radar system for through-the-wall imaging," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 10, 4123-4134, 2012.
doi:10.1109/TGRS.2012.2188411 Google Scholar
5. Tarchi, D., K. Lukin, J. Fortuny-Guasch, A. Mogyla, P. Vyplavin, and A. Sieber, "SAR imaging with noise radar," IEEE Trans. Aerosp. Electron. Syst., Vol. 46, No. 3, 1214-1225, 2010.
doi:10.1109/TAES.2010.5545184 Google Scholar
6. Kim, T. H. and R. M. Narayanan, "Wideband radio frequency noiselet waveforms for multiresolution nondestructive testing of multilayered structures," Progress In Electromagnetics Research B, Vol. 81, 1-23, 2018.
doi:10.2528/PIERB18033007 Google Scholar
7. Coifman, R., F. Geshwind, and Y. Meyer, "Noiselets," Appl. Comput. Harmon. Anal., Vol. 10, No. 1, 27-44, 2001.
doi:10.1006/acha.2000.0313 Google Scholar
8. Candes, E. and J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse Prob., Vol. 23, 969-985, 2007.
doi:10.1088/0266-5611/23/3/008 Google Scholar
9. Keep, D. N., "Frequency-modulation radar for use in the mercantile marine," Proc. IEE --- Part B: Radio Electr. Electron., Vol. 103, No. 10, 519-523, 1956.
doi:10.1049/pi-b-1.1956.0203 Google Scholar
10. Narayanan, R. M., X. Xu, and J. A. Henning, "Radar penetration imaging using ultra-wideband (UWB) random noise waveforms," IET Radar Sonar Navig., Vol. 151, No. 3, 143-148, 2004.
doi:10.1049/ip-rsn:20040418 Google Scholar
11. Sivadas, N. A. and S. S. Mohammed, "A joint technique for sidelobe suppression and peak-to-average power ratio reduction in non-contiguous OFDM-based cognitive radio networks," Int. J. Electron., Vol. 104, No. 2, 190-203, 2017.
doi:10.1080/00207217.2016.1196747 Google Scholar
12. Navagato, M. D. and R. M. Narayanan, "Microwave imaging using ultra-wideband noise waveforms for nondestructive testing of multilayer structures," Proc. SPIE Conf. on Radar Sensor Technology XXII, 1063314-1-1063314-13, Orlando, FL, USA, Apr. 2018. Google Scholar
13. Bossi, R. H. and G. E. Georgeson, "Nondestructive testing of composites," Mater. Eval., Vol. 76, No. 8, 1049-1060, 2018. Google Scholar
14. Sato, N., M. Hojo, and M. Nishikawa, "Intralaminar fatigue crack growth properties of conventional and interlayer toughened CFRP laminate under mode I loading," Composites Part A, Vol. 68, 202-211, 2015.
doi:10.1016/j.compositesa.2014.09.031 Google Scholar
15. Agarwal, B. D. and L. J. Broutman, Analysis and Performance of Fiber Composites, John Wiley & Sons, New York, NY, USA, 1990.
16. Garrett, K. W. and J. E. Bailey, "Multiple transverse fracture in 90◦ cross-ply laminates of a glass fiber-reinforced polyester," J. Mater. Sci., Vol. 12, No. 1, 157-168, 1977.
doi:10.1007/BF00738481 Google Scholar
17. Karandikar, P. and T.-W. Chou, "Characterization and modeling of microcracking and elastic-moduli changes in Nicalon CAS composites," Compos. Sci. Technol., Vol. 46, No. 3, 253-263, 1993.
doi:10.1016/0266-3538(93)90159-E Google Scholar
18. Zhong, Y. and S. C. Joshi, "Initiation of structural defects in carbon fiber reinforced polymer composites under hygrothermal environments," J. Compos. Mater., Vol. 50, No. 8, 1085-1097, 2016.
doi:10.1177/0021998315587133 Google Scholar
19. Narayanan, R. M. and R. James, "Microwave nondestructive testing of galvanic corrosion and impact damage in carbon fiber reinforced polymer composites," Int. J. Microwaves Appl., Vol. 7, No. 1, 1-15, 2018.
doi:10.30534/ijma/2018/01712018 Google Scholar
20. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., John Wiley & Sons, 2012.
21. Richards, M. A., Fundamentals of Radar Signal Processing, McGraw-Hill, New York, NY, USA, 2005.
22. Dehmollaian, M. and K. Sarabandi, "Refocusing through building walls using synthetic aperture radar," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 6, 1589-1599, Jun. 2008.
doi:10.1109/TGRS.2008.916212 Google Scholar
23. Stolt, R. H., "Migration by Fourier transform," Geophys., Vol. 43, No. 1, 23-48, 1978.
doi:10.1190/1.1440826 Google Scholar
24. Lopez-Sanchez, J. M. and J. Fortuny-Guasch, "3-D radar imaging using range migration techniques," IEEE Trans. Antennas Propag., Vol. 48, No. 5, 728-737, 2000.
doi:10.1109/8.855491 Google Scholar
25. Zoughi, R. and B. Zonnefeld, "Permittivity characteristics of kevlar, carbon composites, E-glass, and rubber (33% carbon) at X-band (8-12 GHz)," Review of Progress in Quantitative Nondestructive Evaluation, Vol. 10B, Chapter 38, 1431-1436, Plenum Press, New York, NY, USA, 1991. Google Scholar
26. Seo, I. L., W. S. Chin, and D. G. Lee, "Characterization of electromagnetic properties of polymeric composite materials with free space method," Compos. Struct., Vol. 66, 533-542, 2004.
doi:10.1016/j.compstruct.2004.04.076 Google Scholar
27. Tereshchenko, O. V., F. J. K. Buesink, and F. B. J. Leferink, "Measurement of complex permittivity of composite materials using waveguide method," Proc. 10th International Symp. on Electromagnetic Compatibility (EMC Europe 2011), 52-56, York, UK, Sep. 2011. Google Scholar
28. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., Vol. 34, No. 3, 276-280, 1986.
doi:10.1109/TAP.1986.1143830 Google Scholar
29. Shrestha, S. M. and I. Arai, "Signal processing of ground penetrating radar using spectral estimation techniques to estimate the position of buried targets," EURASIP J. Appl. Signal Process., Vol. 2003, No. 12, 1198-1209, 2003. Google Scholar
30. Iakovleva, E., S. Gdoura, D. Lesselier, and G. Perrusson, "Multistatic response matrix of a 3-D inclusion in half space and MUSIC imaging," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 2598-2609, 2007.
doi:10.1109/TAP.2007.904103 Google Scholar
31. Agarwal, K. and X. Chen, "Applicability of MUSIC-type imaging in two-dimensional electromagnetic inverse problems," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3217-3223, 2008.
doi:10.1109/TAP.2008.929434 Google Scholar
32. Abou-Khousa, M. A., D. L. Simms, S. Kharkovsky, and R. Zoughi, "High-resolution short-range wideband FMCW radar measurements based on MUSIC algorithm," Proc. 2009 IEEE International Instrumentation and Measurement Technology Conf. (I2MTC 2009), Singapore, May 2009, DOI: 10.1109/IMTC.2009.5168500. Google Scholar
33. Shirmehenji, F., A. Zeidaabadi-Nezhad, and Z. H. Firouzeh, "Object locating of electromagnetic inclusions in anisotropic permeable background using MUSIC algorithm," Progress In Electromagnetics Research C, Vol. 85, 77-89, 2018.
doi:10.2528/PIERC18041908 Google Scholar