1. Bharadwaj, P., B. Deutsch, and L. Novotny, "Optical antennas," J. Opt. Soc. Am. B, Vol. 24, No. 11, 3014-3022, 2007. Google Scholar
2. Novotny, L. and N. F. van Hulst, "Antennas for light," Nature Photonics, Vol. 5, No. 2, 83-90, 2011.
doi:10.1038/nphoton.2010.237 Google Scholar
3. Alu, A. and N. Engheta, "Wireless at the nanoscale: Optical interconnects using matched nanoantennas," Physical Review Letters, Vol. 104, No. 21, 213902, 2010.
doi:10.1103/PhysRevLett.104.213902 Google Scholar
4. Ma, Z. and G. A. E. Vandenbosch, "Systematic full-wave characterization of real-metal nano dipole antennas," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 10, 4990-4999, 2013.
doi:10.1109/TAP.2013.2271712 Google Scholar
5. Polemi, A., A. Alu, and N. Engheta, "Nanocircuit loading of plasmonic waveguides," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4381-4390, 2012.
doi:10.1109/TAP.2012.2207065 Google Scholar
6. Kosako, T., Y. Kadoya, and H. F. Hofmann, "Directional control of light by a nano-optical Yagi-Uda antenna," Nature Photon., Vol. 4, 312-315, 2010.
doi:10.1038/nphoton.2010.34 Google Scholar
7. Alu, A. and N. Engheta, "Theory, modeling and features of optical nanoantennas," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1508-1517, 2013.
doi:10.1109/TAP.2013.2241718 Google Scholar
8. Nafari, M. and J. M. Jornet, "Modeling and performance analysis of metallic plasmonic nano-antennas for wireless optical communication in nanonetworks," IEEE Access, Vol. 5, 6389-6398, 2017.
doi:10.1109/ACCESS.2017.2690990 Google Scholar
9. Wang, L., M. H. Kafshgari, and M. Meunier, "Optical properties and applications of plasmonic-metal nanoparticles," J. Adv. Funct. Mater., Vol. 30, No. 51, 2005400, 2020.
doi:10.1002/adfm.202005400 Google Scholar
10. West, P. R., S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, "Searching for better plasmonic materials," J. Laser & Photon. Rev., Vol. 4, No. 6, 795-808, 2010.
doi:10.1002/lpor.200900055 Google Scholar
11. Gutierrez, Y., A. S. Brown, F. Moreno, and M. Losurdo, "Plasmonics beyond noble metals: Exploiting phase and compositional changes for manipulating plasmonic performance," J. Appl. Phys., Vol. 128, No. 8, 0801901, 2020.
doi:10.1063/5.0020752 Google Scholar
12. Losurdo, M., F. Moreno, C. Cobet, M. Modreanu, and W. Pernice, "Plasmonics: Enabling functionalities with novel materials," J. Appl. Phys., Vol. 129, No. 22, 220401, 2021.
doi:10.1063/5.0056296 Google Scholar
13. Morshed, M., Z. Li, B. C. Olbricht, L. Fu, A. Haque, L. Li, A. A. Rifat, M. Rahmani, A. E. Miroshnichenko, and H. T. Hattori, "High fluence chromium and tungsten bowtie nano-antennas," Sci. Rep., Vol. 9, No. 13023, 1-11, 2019. Google Scholar
14. Mironov, E. G., Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, "Titanium nano-antenna for high-power pulsed operation," IEEE Journal of Lightwave Technology, Vol. 31, No. 15, 2459-2466, 2013.
doi:10.1109/JLT.2013.2261281 Google Scholar
15. Barchiesi, D. and T. Grosges, "Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth," Journal of Nanophotonics, Vol. 8, 083097, 2014.
doi:10.1117/1.JNP.8.083097 Google Scholar
16. Gerard, D. and S. K. Gray, "Aluminium plasmonics," Journal of Physics D: Applied Physics, Vol. 48, No. 18, 184001, 2015.
doi:10.1088/0022-3727/48/18/184001 Google Scholar
17. Dash, A. P., "Impact of silicon-based substrates on graphene THz antenna," Physica E: Low-dimensional Systems and Nanostructures, Vol. 126, 1-24, 2021. Google Scholar
18. Morshed, M., Md. A. Haque, and H. T. Hattori, "The effect of the substrate on the damage threshold of gold nano-antennas by a femtosecond laser," Materials Research Express, Vol. 7, No. 9, 096201, 2020.
doi:10.1088/2053-1591/abb4fb Google Scholar
19. Nickelson, L., Electromagnetic Theory and Plasmonics for Engineers, 1st Ed., 611-695, Springer Singapore, 2019.
doi:10.1007/978-981-13-2352-2_9
20. Alabastri, A., S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. D. Fabrizio, and R. P. Zaccaria, "Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature," Materials (Basel), Vol. 25, No. 6, 4879-4910, 2013.
doi:10.3390/ma6114879 Google Scholar
21. Philipp, H. R., "Optical properties of silicon nitride," Journal of the Electrochemical Society, Vol. 120, No. 2, 295, 1973.
doi:10.1149/1.2403440 Google Scholar
22. Oh, M., Study of Cu/SiO2/Cu Metamaterials: Design, Simulation, Fabrication, Testing, and Optical Applications, 2017.
23. Taya, S. A., N. E. Al-Ashi, O. M. Ramahi, I. Colak, and I. S. Amiri, "Surface plasmon resonance-based optical sensor using a thin layer of plasma," J. Opt. Soc. Am. B, Vol. 38, No. 8, 2362-2367, 2021.
doi:10.1364/JOSAB.420129 Google Scholar
24. Taya, S. A., N. Doghmosh, A. A. Alkanoo, V. Dhasarathan, N. R. Ramanujam, and I. Amiri, "Waveguides including negative permeability and simultaneously negative permittivity and permeability materials for sensing applications," Optik (Stuttgart), Vol. 228, 166147, 2021.
doi:10.1016/j.ijleo.2020.166147 Google Scholar
25. Taya, S. A., N. Doghmosh, and Z. M. Nassar, "Refractometric sensor based on slab waveguides of simultaneously negative permittivity and permeability materials," J. Opt. Quant. Electron., Vol. 52, 519, 2020.
doi:10.1007/s11082-020-02631-y Google Scholar
26. Krishnamurthy, R., V. Revathy, K. S. J. Wilson, S. A. Taya, and I. S. Amiri, "Phonon polariton dispersion in metal-doped nanocomposite superlattice system," Journal of Optical Communications, 2019. Google Scholar