Vol. 95
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-02-11
Investigation of Plasmonic Metal Conductors and Dielectric Substrates on Nano-Antenna for Optical Wireless Communication
By
Progress In Electromagnetics Research B, Vol. 95, 1-22, 2022
Abstract
In this manuscript, plasmonic metal conductors such as Silver, Gold, Aluminum, Copper, Chromium, Tungsten, Titanium, and Nickel are investigated on a T-shaped nano dipole antenna using dielectric materials such as Silicon Dioxide, Zinc Oxide, Indium Tin Oxide, and Silicon Nitride. The optical properties of the conductors and dielectric materials are modeled using Drude and Lorentz dispersive models, respectively. It is observed that the Aluminium metal supports high quality plasmonic oscillations for a wide range of Terahertz frequencies. The Aluminium metal also shows high losses occurring at the Terahertz frequency among the other metals. The Gold and Silver can resonate in the visible region and have moderate losses compared to the other plasmonic metals. It is noticed that the near-zero permittivity point of the Silicon Dioxide substrate occurs at 2875 THz which is much greater than the other three substrates. Further, it is observed that on the Silicon Dioxide, Zinc Oxide, and Silicon Nitride substrates the Silver Nano dipole antenna shows the maximum directivity of 6.615 dBi, 5.671 dBi, and 5.709 dBi, respectively. The Aluminium nano-antenna gives the maximum directivity of 5.066 dBi on the Indium Tin Oxide substrate. The Silver-Silicon Dioxide Nano-antenna will be suitable for the terahertz optical wireless communication.
Citation
Kavitha S, Kanduri Venkata Sairam, and Ashish Singh, "Investigation of Plasmonic Metal Conductors and Dielectric Substrates on Nano-Antenna for Optical Wireless Communication," Progress In Electromagnetics Research B, Vol. 95, 1-22, 2022.
doi:10.2528/PIERB21122407
References

1. Bharadwaj, P., B. Deutsch, and L. Novotny, "Optical antennas," J. Opt. Soc. Am. B, Vol. 24, No. 11, 3014-3022, 2007.

2. Novotny, L. and N. F. van Hulst, "Antennas for light," Nature Photonics, Vol. 5, No. 2, 83-90, 2011.
doi:10.1038/nphoton.2010.237

3. Alu, A. and N. Engheta, "Wireless at the nanoscale: Optical interconnects using matched nanoantennas," Physical Review Letters, Vol. 104, No. 21, 213902, 2010.
doi:10.1103/PhysRevLett.104.213902

4. Ma, Z. and G. A. E. Vandenbosch, "Systematic full-wave characterization of real-metal nano dipole antennas," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 10, 4990-4999, 2013.
doi:10.1109/TAP.2013.2271712

5. Polemi, A., A. Alu, and N. Engheta, "Nanocircuit loading of plasmonic waveguides," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4381-4390, 2012.
doi:10.1109/TAP.2012.2207065

6. Kosako, T., Y. Kadoya, and H. F. Hofmann, "Directional control of light by a nano-optical Yagi-Uda antenna," Nature Photon., Vol. 4, 312-315, 2010.
doi:10.1038/nphoton.2010.34

7. Alu, A. and N. Engheta, "Theory, modeling and features of optical nanoantennas," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1508-1517, 2013.
doi:10.1109/TAP.2013.2241718

8. Nafari, M. and J. M. Jornet, "Modeling and performance analysis of metallic plasmonic nano-antennas for wireless optical communication in nanonetworks," IEEE Access, Vol. 5, 6389-6398, 2017.
doi:10.1109/ACCESS.2017.2690990

9. Wang, L., M. H. Kafshgari, and M. Meunier, "Optical properties and applications of plasmonic-metal nanoparticles," J. Adv. Funct. Mater., Vol. 30, No. 51, 2005400, 2020.
doi:10.1002/adfm.202005400

10. West, P. R., S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, "Searching for better plasmonic materials," J. Laser & Photon. Rev., Vol. 4, No. 6, 795-808, 2010.
doi:10.1002/lpor.200900055

11. Gutierrez, Y., A. S. Brown, F. Moreno, and M. Losurdo, "Plasmonics beyond noble metals: Exploiting phase and compositional changes for manipulating plasmonic performance," J. Appl. Phys., Vol. 128, No. 8, 0801901, 2020.
doi:10.1063/5.0020752

12. Losurdo, M., F. Moreno, C. Cobet, M. Modreanu, and W. Pernice, "Plasmonics: Enabling functionalities with novel materials," J. Appl. Phys., Vol. 129, No. 22, 220401, 2021.
doi:10.1063/5.0056296

13. Morshed, M., Z. Li, B. C. Olbricht, L. Fu, A. Haque, L. Li, A. A. Rifat, M. Rahmani, A. E. Miroshnichenko, and H. T. Hattori, "High fluence chromium and tungsten bowtie nano-antennas," Sci. Rep., Vol. 9, No. 13023, 1-11, 2019.

14. Mironov, E. G., Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, "Titanium nano-antenna for high-power pulsed operation," IEEE Journal of Lightwave Technology, Vol. 31, No. 15, 2459-2466, 2013.
doi:10.1109/JLT.2013.2261281

15. Barchiesi, D. and T. Grosges, "Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth," Journal of Nanophotonics, Vol. 8, 083097, 2014.
doi:10.1117/1.JNP.8.083097

16. Gerard, D. and S. K. Gray, "Aluminium plasmonics," Journal of Physics D: Applied Physics, Vol. 48, No. 18, 184001, 2015.
doi:10.1088/0022-3727/48/18/184001

17. Dash, A. P., "Impact of silicon-based substrates on graphene THz antenna," Physica E: Low-dimensional Systems and Nanostructures, Vol. 126, 1-24, 2021.

18. Morshed, M., Md. A. Haque, and H. T. Hattori, "The effect of the substrate on the damage threshold of gold nano-antennas by a femtosecond laser," Materials Research Express, Vol. 7, No. 9, 096201, 2020.
doi:10.1088/2053-1591/abb4fb

19. Nickelson, L., Electromagnetic Theory and Plasmonics for Engineers, 1st Ed., 611-695, Springer Singapore, 2019.
doi:10.1007/978-981-13-2352-2_9

20. Alabastri, A., S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. D. Fabrizio, and R. P. Zaccaria, "Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature," Materials (Basel), Vol. 25, No. 6, 4879-4910, 2013.
doi:10.3390/ma6114879

21. Philipp, H. R., "Optical properties of silicon nitride," Journal of the Electrochemical Society, Vol. 120, No. 2, 295, 1973.
doi:10.1149/1.2403440

22. Oh, M., Study of Cu/SiO2/Cu Metamaterials: Design, Simulation, Fabrication, Testing, and Optical Applications, 2017.

23. Taya, S. A., N. E. Al-Ashi, O. M. Ramahi, I. Colak, and I. S. Amiri, "Surface plasmon resonance-based optical sensor using a thin layer of plasma," J. Opt. Soc. Am. B, Vol. 38, No. 8, 2362-2367, 2021.
doi:10.1364/JOSAB.420129

24. Taya, S. A., N. Doghmosh, A. A. Alkanoo, V. Dhasarathan, N. R. Ramanujam, and I. Amiri, "Waveguides including negative permeability and simultaneously negative permittivity and permeability materials for sensing applications," Optik (Stuttgart), Vol. 228, 166147, 2021.
doi:10.1016/j.ijleo.2020.166147

25. Taya, S. A., N. Doghmosh, and Z. M. Nassar, "Refractometric sensor based on slab waveguides of simultaneously negative permittivity and permeability materials," J. Opt. Quant. Electron., Vol. 52, 519, 2020.
doi:10.1007/s11082-020-02631-y

26. Krishnamurthy, R., V. Revathy, K. S. J. Wilson, S. A. Taya, and I. S. Amiri, "Phonon polariton dispersion in metal-doped nanocomposite superlattice system," Journal of Optical Communications, 2019.