Vol. 95
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-04-21
Miniaturized Dual-Band Embedded NZI Metasurface Antenna with Front-to-Back Radiation Ratio Enhancement
By
Progress In Electromagnetics Research B, Vol. 95, 61-79, 2022
Abstract
In this paper, a novel miniaturized dual-band embedded near-zero index (NZI) metasurface-based patch antenna is presented. A new methodology based on loading a narrowband microstrip patch antenna (resonating at 4.6 GHz) by a metasurface embedded in the middle of the antenna's substrate is introduced. The loaded antenna has a dual-band resonance of bandwidth of 15% and 43% at 2 GHz and 4.6 GHz, respectively. The metasurface layer is an array of square holes such that there is no hole below the patch. The metasurface layer is designed as a near-zero-refractive-index material (NZRIM). By controlling the phase reflection properties of the structure, the antenna gain is increased by 5.5\,dB, original bandwidth increased ten times and the front-to-back ratio improved from 7 to 187. Also, footprint miniaturization of 56.5% with a maximum size of (1.9λ0)2 is obtained. To the best of the authors' knowledge, such enhancement is the largest to date.
Citation
Parul Dawar, and Mahmoud Abdalla, "Miniaturized Dual-Band Embedded NZI Metasurface Antenna with Front-to-Back Radiation Ratio Enhancement," Progress In Electromagnetics Research B, Vol. 95, 61-79, 2022.
doi:10.2528/PIERB22020404
References

1. Wong, K. L., Compact and Broadband Microstrip Antennas, Wiley, 2002.
doi:10.1002/0471221112

2. Lo, T. K., Y. Hwang, E. K. W. Lam, and B. Lee, "Miniature aperture-coupled microstrip antenna of very high permittivity," Electron. Lett., Vol. 33, 9-10, 1997.
doi:10.1049/el:19970053        Google Scholar

3. Lee, B. and F. J. Harackiewicz, "Miniature microstrip antenna with a partially filled high-permittivity substrate," IEEE Trans. Antennas Propagat., Vol. 50, No. 8, 1160-1162, 2002.
doi:10.1109/TAP.2002.801360        Google Scholar

4. Waterhouse, R., "Small microstrip patch antenna," Electron. Lett., Vol. 31, No. 8, 604-605, 1995.
doi:10.1049/el:19950426        Google Scholar

5. Wong, K. L. and Y. F. Lin, "Small broadband rectangular microstrip patch antenna with chip-resistor loading," Electron. Lett., Vol. 33, No. 19, 1593-1594, 1997.
doi:10.1049/el:19971111        Google Scholar

6. Ferrari, P., N. Corrao, and D. Rauly, "Miniaturized circular patch antenna with capacitors loading," SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 86-89, Brazil, 2007.        Google Scholar

7. Wong, K. L., C. L. Tang, and H. T. Chen, "A compact meandered circular microstrip antenna with a shorting pin," Microwave Opt. Technol. Lett., Vol. 15, 147-149, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<147::AID-MOP8>3.0.CO;2-G        Google Scholar

8. Nasimuddin, X. Q. and Z. N. Chen, "A compact circularly polarized slotted patch antenna for GNSS applications," IEEE Trans. Antennas Propagat., Vol. 62, No. 12, 6506-6509, 2014.
doi:10.1109/TAP.2014.2360218        Google Scholar

9. Dong, Y. D., H. Toyao, and T. Itoh, "Compact circularly-polarized patch antenna loaded with metamaterial structures," IEEE Trans. Antennas Propagat., Vol. 59, 4329-4333, 2011.
doi:10.1109/TAP.2011.2164223        Google Scholar

10. Kumar, G. and K. Gupta, "Nonradiating edges and four edges gap-coupled multiple resonator broad-band microstrip antennas," IEEE Antennas Propag. Mag., 127-135, 2015.        Google Scholar

11. Yang, M., Z. N. Chen, P. Y. Lau, X. Qing, and X. Yinl, "Miniaturized patch antenna with grounded strips," IEEE Trans. Antennas Propagat., Vol. 63, No. 2, 2015.
doi:10.1109/TAP.2014.2382668        Google Scholar

12. Pozar, D. M., "Microstrip antennas," Proceedings of the IEEE, Vol. 80, No. 1, 79-91, 1992.
doi:10.1109/5.119568        Google Scholar

13. Long, S. and M. Walton, "A dual-frequency stacked circular-disc antenna," IEEE Trans. Antennas Propagat., Vol. 27, No. 2, 1979.
doi:10.1109/TAP.1979.1142078        Google Scholar

14. Sullivan, P. and D. Schaubert, "Analysis of an aperture coupled microstrip antenna," IEEE Trans. Antennas Propagat., Vol. 34, No. 8, 1986.
doi:10.1109/TAP.1986.1143929        Google Scholar

15. Maci, S., G. Biffi Gentili, P. Piazzesi, and C. Salvador, "Dual-band slot-loaded patch antenna," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 142, No. 3, 225-232, 1995.
doi:10.1049/ip-map:19951932        Google Scholar

16. Mohamad, S., R. Cahill, and V. Fusco, "Performance of Archimedean spiral antenna backed by FSS reflector," Electron. Lett., Vol. 51, No. 1, 14-16, 2014.
doi:10.1049/el.2014.3693        Google Scholar

17. Gonzalo, R., P. De Maagt, and M. Sorolla, "Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2131-2138, 1999.
doi:10.1109/22.798009        Google Scholar

18. Trentini, G. V., "Partially reflecting sheet arrays," IRE Trans. Antennas Propag., Vol. 4, No. 4, 666-671, 1956.
doi:10.1109/TAP.1956.1144455        Google Scholar

19. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas Propag. Mag., Vol. 54, No. 2, 10-35, 2012.
doi:10.1109/MAP.2012.6230714        Google Scholar

20. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Compact all-textile dual-band antenna loaded with metamaterial inspired structure," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1486-1489, 2014.        Google Scholar

21. Sharma, S., M. Abdalla, and Z. Hu, "Miniaturization of an electrically small metamaterial inspired antenna using additional conducting layer," IET Microw. Antennas Propag., Vol. 12, No. 8, 1444-1449, 2018.
doi:10.1049/iet-map.2017.0927        Google Scholar

22. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Low-profile dual-band textile antenna with artificial magnetic conductor plane," IEEE Trans. Antennas Propagat., Vol. 62, No. 12, 6487-6490, 2014.
doi:10.1109/TAP.2014.2359194        Google Scholar

23. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Wearable dual-band magneto-electric dipole antenna for WBAN/WLAN applications," IEEE Trans. Antennas Propagat., Vol. 63, No. 9, 4165-4169, 2015.
doi:10.1109/TAP.2015.2443863        Google Scholar

24. Lubkowski, G., C. Damm, B. Bandlow, R. Schuhmann, M. Schβler, and T. Weiland, "Metamaterial loaded waveguides for miniaturized filter applications," Frequenz, Vol. 62, 3-4, 2018.        Google Scholar

25. Jia, Y., Y. Liu, W. Zhang, J. Wang, S. Gong, and G. Liao, "High-gain Fabry-Perot antennas with wideband low monostatic RCS using phase gradient metasurface," IEEE Access, Vol. 7, 4816-4824, 2019.
doi:10.1109/ACCESS.2018.2886832        Google Scholar

26. Jiang, H., Z. Xue, M. Leng, W. Li, and W. Ren, "Wideband partially reflecting surface antenna with broadband RCS reduction," IET Microw., Antennas Propag., Vol. 12, No. 6, 94194, 2018.
doi:10.1049/iet-map.2017.0630        Google Scholar

27. Mu, J., H. Wang, H. Wang, and Y. Huang, "Low-RCS and gain enhancement design of a novel partially reflecting and absorbing surface antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1903-1906, 2017.
doi:10.1109/LAWP.2017.2685623        Google Scholar

28. Zheng, Y., J. Gao, Y. Zhou, X. Cao, H. Yang, S. Li, and T. Li, "Wideband gain enhancement and RCS reduction of Fabry-Perot resonator antenna with chessboard arranged metamaterial superstrate," IEEE Trans. Antennas Propagat., Vol. 66, No. 2, 590-599, Feb. 2018.
doi:10.1109/TAP.2017.2780896        Google Scholar

29. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "High-gain and high-aperture-efficiency cavity resonator antenna using metamaterial superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2388-2391, 2017.
doi:10.1109/LAWP.2017.2719864        Google Scholar

30. Dawar, P. and M. A. Abdalla, "Near-zero-refractive-index metasurface antenna with bandwidth, directivity and front-to-back radiation ratio enhancement," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 14, 1863-1881, 2021.
doi:10.1080/09205071.2021.1923069        Google Scholar

31. Deng, F. and J. Qi, "Shrinking profile of Fabry-Perot cavity antennas with stratified metasurfaces: Accurate equivalent circuit design and broadband high-gain performance," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 208-212, 2020.        Google Scholar

32. Pham, D. A., E. Park, H. L. Lee, and S. Lim, "High gain and wideband metasurfaced magneto-electric antenna for WiGig applications," IEEE Trans. Antennas Propagat., Vol. 69, No. 2, 1140-1145, 2021.        Google Scholar

33. Marcuvitz, N., Waveguide Handbook, Vol. 21, Peter Peregrinus Ltd., 1986.

34. Langley, R. J. and E. A. Parker, "Equivalent circuit model for arrays of square loops," Electron. Lett., Vol. 18, No. 7, 294-296, 1982.        Google Scholar

35. Lee, C. K. and R. J. Langley, "Equivalent-circuit models for frequency selective surfaces at oblique angles of incidence," IEE Proceedings --- H, Microwaves Optics and Antennas, Vol. 132, 395-399, 1985.        Google Scholar

36. Saraswat, R. K. and M. Kumar, "A metamaterial loaded hybrid fractal multiband antenna for wireless applications with frequency band reconfigurability characteristics," Frequenz, Vol. 74, No. 11-12, Sept. 2020.        Google Scholar

37. Reed, J. A., Frequency selective surfaces with multiple periodic elements, Ph.D. Thesis, University of Texas Dallas, USA, 1997.

38. Liu, A., S. Lei, X. Shi, and L. Li, "Study of antenna superstrates using metamaterials for directivity enhancement based on Fabry-Perot resonant cavity," International Journal of Antennas and Propagation, Vol. 2013, 1-10, 2013.        Google Scholar

39. Peng, X., G. Wang, H. Li, and X. Gao, "A novel methodology for gain enhancement of the Fabry-Perot antenna," IEEE Access, Vol. 7, 176170-176176, 2019.        Google Scholar

40. Uddin, M. J., M. H. Ullah, T. A. Latef, W. N. Mahadi, and M. T. Islam, "Making meta better: The synthesis of new-shaped periodic artificial structures suitable for metamaterial behavior characterization," IEEE Microw. Mag., Vol. 8, No. 17, 52-58, 2016.        Google Scholar

41. Karlsson, A., "Approximate boundary conditions for thin structures," IEEE Trans. Antennas Propagat., Vol. 57, No. 1, 144-148, 2009.        Google Scholar

42. Van Labeke, D., D. Gerard, B. Guizal, F. I. Baida, and L. Li, "An angle-independent frequency selective surface in the optical range," Optics Express, Vol. 14, No. 25, 11945-11951, 2006.        Google Scholar

43. Liu, Y., S. Xia, H. Shi, A. Zhang, and Z. Xu, "Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies," Appl. Phys. B, Vol. 122, 178, 2016.        Google Scholar

44. Mustafa, M. E., F. A. Tahir, and M. Amin, "Broadband waveplate operation by orthotropic metasurface refector," J. Appl. Phys., Vol. 126, 2019.        Google Scholar

45. Li, J., et al., "Dual-band transmissive cross-polarization converter with extremely high polarization conversion ratio using transmitarray," Materials, Vol. 12, No. 1827, 2019.        Google Scholar

46. Cao, H., et al., "Dual-band polarization conversion based on non-twisted Q-shaped metasurface," Opt. Comm., Vol. 370, 311-318, 2016.        Google Scholar

47. Khan, M. I., Q. Fraz, and F. A. Tahir, "Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle," J. Appl. Phys., Vol. 121, 045103, 2017.        Google Scholar