1. Wong, K. L., Compact and Broadband Microstrip Antennas, Wiley, 2002.
doi:10.1002/0471221112
2. Lo, T. K., Y. Hwang, E. K. W. Lam, and B. Lee, "Miniature aperture-coupled microstrip antenna of very high permittivity," Electron. Lett., Vol. 33, 9-10, 1997.
doi:10.1049/el:19970053 Google Scholar
3. Lee, B. and F. J. Harackiewicz, "Miniature microstrip antenna with a partially filled high-permittivity substrate," IEEE Trans. Antennas Propagat., Vol. 50, No. 8, 1160-1162, 2002.
doi:10.1109/TAP.2002.801360 Google Scholar
4. Waterhouse, R., "Small microstrip patch antenna," Electron. Lett., Vol. 31, No. 8, 604-605, 1995.
doi:10.1049/el:19950426 Google Scholar
5. Wong, K. L. and Y. F. Lin, "Small broadband rectangular microstrip patch antenna with chip-resistor loading," Electron. Lett., Vol. 33, No. 19, 1593-1594, 1997.
doi:10.1049/el:19971111 Google Scholar
6. Ferrari, P., N. Corrao, and D. Rauly, "Miniaturized circular patch antenna with capacitors loading," SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 86-89, Brazil, 2007. Google Scholar
7. Wong, K. L., C. L. Tang, and H. T. Chen, "A compact meandered circular microstrip antenna with a shorting pin," Microwave Opt. Technol. Lett., Vol. 15, 147-149, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<147::AID-MOP8>3.0.CO;2-G Google Scholar
8. Nasimuddin, X. Q. and Z. N. Chen, "A compact circularly polarized slotted patch antenna for GNSS applications," IEEE Trans. Antennas Propagat., Vol. 62, No. 12, 6506-6509, 2014.
doi:10.1109/TAP.2014.2360218 Google Scholar
9. Dong, Y. D., H. Toyao, and T. Itoh, "Compact circularly-polarized patch antenna loaded with metamaterial structures," IEEE Trans. Antennas Propagat., Vol. 59, 4329-4333, 2011.
doi:10.1109/TAP.2011.2164223 Google Scholar
10. Kumar, G. and K. Gupta, "Nonradiating edges and four edges gap-coupled multiple resonator broad-band microstrip antennas," IEEE Antennas Propag. Mag., 127-135, 2015. Google Scholar
11. Yang, M., Z. N. Chen, P. Y. Lau, X. Qing, and X. Yinl, "Miniaturized patch antenna with grounded strips," IEEE Trans. Antennas Propagat., Vol. 63, No. 2, 2015.
doi:10.1109/TAP.2014.2382668 Google Scholar
12. Pozar, D. M., "Microstrip antennas," Proceedings of the IEEE, Vol. 80, No. 1, 79-91, 1992.
doi:10.1109/5.119568 Google Scholar
13. Long, S. and M. Walton, "A dual-frequency stacked circular-disc antenna," IEEE Trans. Antennas Propagat., Vol. 27, No. 2, 1979.
doi:10.1109/TAP.1979.1142078 Google Scholar
14. Sullivan, P. and D. Schaubert, "Analysis of an aperture coupled microstrip antenna," IEEE Trans. Antennas Propagat., Vol. 34, No. 8, 1986.
doi:10.1109/TAP.1986.1143929 Google Scholar
15. Maci, S., G. Biffi Gentili, P. Piazzesi, and C. Salvador, "Dual-band slot-loaded patch antenna," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 142, No. 3, 225-232, 1995.
doi:10.1049/ip-map:19951932 Google Scholar
16. Mohamad, S., R. Cahill, and V. Fusco, "Performance of Archimedean spiral antenna backed by FSS reflector," Electron. Lett., Vol. 51, No. 1, 14-16, 2014.
doi:10.1049/el.2014.3693 Google Scholar
17. Gonzalo, R., P. De Maagt, and M. Sorolla, "Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2131-2138, 1999.
doi:10.1109/22.798009 Google Scholar
18. Trentini, G. V., "Partially reflecting sheet arrays," IRE Trans. Antennas Propag., Vol. 4, No. 4, 666-671, 1956.
doi:10.1109/TAP.1956.1144455 Google Scholar
19. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas Propag. Mag., Vol. 54, No. 2, 10-35, 2012.
doi:10.1109/MAP.2012.6230714 Google Scholar
20. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Compact all-textile dual-band antenna loaded with metamaterial inspired structure," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1486-1489, 2014. Google Scholar
21. Sharma, S., M. Abdalla, and Z. Hu, "Miniaturization of an electrically small metamaterial inspired antenna using additional conducting layer," IET Microw. Antennas Propag., Vol. 12, No. 8, 1444-1449, 2018.
doi:10.1049/iet-map.2017.0927 Google Scholar
22. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Low-profile dual-band textile antenna with artificial magnetic conductor plane," IEEE Trans. Antennas Propagat., Vol. 62, No. 12, 6487-6490, 2014.
doi:10.1109/TAP.2014.2359194 Google Scholar
23. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Wearable dual-band magneto-electric dipole antenna for WBAN/WLAN applications," IEEE Trans. Antennas Propagat., Vol. 63, No. 9, 4165-4169, 2015.
doi:10.1109/TAP.2015.2443863 Google Scholar
24. Lubkowski, G., C. Damm, B. Bandlow, R. Schuhmann, M. Schβler, and T. Weiland, "Metamaterial loaded waveguides for miniaturized filter applications," Frequenz, Vol. 62, 3-4, 2018. Google Scholar
25. Jia, Y., Y. Liu, W. Zhang, J. Wang, S. Gong, and G. Liao, "High-gain Fabry-Perot antennas with wideband low monostatic RCS using phase gradient metasurface," IEEE Access, Vol. 7, 4816-4824, 2019.
doi:10.1109/ACCESS.2018.2886832 Google Scholar
26. Jiang, H., Z. Xue, M. Leng, W. Li, and W. Ren, "Wideband partially reflecting surface antenna with broadband RCS reduction," IET Microw., Antennas Propag., Vol. 12, No. 6, 94194, 2018.
doi:10.1049/iet-map.2017.0630 Google Scholar
27. Mu, J., H. Wang, H. Wang, and Y. Huang, "Low-RCS and gain enhancement design of a novel partially reflecting and absorbing surface antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1903-1906, 2017.
doi:10.1109/LAWP.2017.2685623 Google Scholar
28. Zheng, Y., J. Gao, Y. Zhou, X. Cao, H. Yang, S. Li, and T. Li, "Wideband gain enhancement and RCS reduction of Fabry-Perot resonator antenna with chessboard arranged metamaterial superstrate," IEEE Trans. Antennas Propagat., Vol. 66, No. 2, 590-599, Feb. 2018.
doi:10.1109/TAP.2017.2780896 Google Scholar
29. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "High-gain and high-aperture-efficiency cavity resonator antenna using metamaterial superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2388-2391, 2017.
doi:10.1109/LAWP.2017.2719864 Google Scholar
30. Dawar, P. and M. A. Abdalla, "Near-zero-refractive-index metasurface antenna with bandwidth, directivity and front-to-back radiation ratio enhancement," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 14, 1863-1881, 2021.
doi:10.1080/09205071.2021.1923069 Google Scholar
31. Deng, F. and J. Qi, "Shrinking profile of Fabry-Perot cavity antennas with stratified metasurfaces: Accurate equivalent circuit design and broadband high-gain performance," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 208-212, 2020. Google Scholar
32. Pham, D. A., E. Park, H. L. Lee, and S. Lim, "High gain and wideband metasurfaced magneto-electric antenna for WiGig applications," IEEE Trans. Antennas Propagat., Vol. 69, No. 2, 1140-1145, 2021. Google Scholar
33. Marcuvitz, N., Waveguide Handbook, Vol. 21, Peter Peregrinus Ltd., 1986.
34. Langley, R. J. and E. A. Parker, "Equivalent circuit model for arrays of square loops," Electron. Lett., Vol. 18, No. 7, 294-296, 1982. Google Scholar
35. Lee, C. K. and R. J. Langley, "Equivalent-circuit models for frequency selective surfaces at oblique angles of incidence," IEE Proceedings --- H, Microwaves Optics and Antennas, Vol. 132, 395-399, 1985. Google Scholar
36. Saraswat, R. K. and M. Kumar, "A metamaterial loaded hybrid fractal multiband antenna for wireless applications with frequency band reconfigurability characteristics," Frequenz, Vol. 74, No. 11-12, Sept. 2020. Google Scholar
37. Reed, J. A., Frequency selective surfaces with multiple periodic elements, Ph.D. Thesis, University of Texas Dallas, USA, 1997.
38. Liu, A., S. Lei, X. Shi, and L. Li, "Study of antenna superstrates using metamaterials for directivity enhancement based on Fabry-Perot resonant cavity," International Journal of Antennas and Propagation, Vol. 2013, 1-10, 2013. Google Scholar
39. Peng, X., G. Wang, H. Li, and X. Gao, "A novel methodology for gain enhancement of the Fabry-Perot antenna," IEEE Access, Vol. 7, 176170-176176, 2019. Google Scholar
40. Uddin, M. J., M. H. Ullah, T. A. Latef, W. N. Mahadi, and M. T. Islam, "Making meta better: The synthesis of new-shaped periodic artificial structures suitable for metamaterial behavior characterization," IEEE Microw. Mag., Vol. 8, No. 17, 52-58, 2016. Google Scholar
41. Karlsson, A., "Approximate boundary conditions for thin structures," IEEE Trans. Antennas Propagat., Vol. 57, No. 1, 144-148, 2009. Google Scholar
42. Van Labeke, D., D. Gerard, B. Guizal, F. I. Baida, and L. Li, "An angle-independent frequency selective surface in the optical range," Optics Express, Vol. 14, No. 25, 11945-11951, 2006. Google Scholar
43. Liu, Y., S. Xia, H. Shi, A. Zhang, and Z. Xu, "Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies," Appl. Phys. B, Vol. 122, 178, 2016. Google Scholar
44. Mustafa, M. E., F. A. Tahir, and M. Amin, "Broadband waveplate operation by orthotropic metasurface refector," J. Appl. Phys., Vol. 126, 2019. Google Scholar
45. Li, J., et al., "Dual-band transmissive cross-polarization converter with extremely high polarization conversion ratio using transmitarray," Materials, Vol. 12, No. 1827, 2019. Google Scholar
46. Cao, H., et al., "Dual-band polarization conversion based on non-twisted Q-shaped metasurface," Opt. Comm., Vol. 370, 311-318, 2016. Google Scholar
47. Khan, M. I., Q. Fraz, and F. A. Tahir, "Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle," J. Appl. Phys., Vol. 121, 045103, 2017. Google Scholar