1. Ren, X., "High temperature materials characterization and sensor application," Electron. Theses Diss., 2304, Jan. 2012, Accessed: Dec. 25, 2021, [Online]. Available: https://stars.library.ucf.edu/etd/2304. Google Scholar
2. Lu, F., et al., "Highly sensitive reentrant cavity-microstrip patch antenna integrated wireless passive pressure sensor for high temperature applications," J. Sensors, Vol. 2017, 1-10, 2017.
doi:10.1155/2017/3417562 Google Scholar
3. Tchafa, F. E. M., "Wireless antenna sensors for boiler condition monitoring,", 2018. Google Scholar
4. Rani, S., A. Marwaha, and S. Marwaha, "Investigation of substrate materials for graphene oxide absorber loaded antenna array increased ambient temperature," Photonic Netw. Commun., Vol. 40, No. 2, 94-102, 2020.
doi:10.1007/s11107-020-00908-6 Google Scholar
5. Yu, Y., B. Han, and F. Xia, "PDC-SiAlCN ceramic based wireless passive temperature sensors using integrated resonator/antenna up to 1100◦C," Sens. Rev., Vol. 40, No. 1, 62-70, 2020.
doi:10.1108/SR-12-2018-0337 Google Scholar
6. Zhao, C., X. Li, C. Sun, Y. Liu, and W. Ouyang, "Design of point focusing lens antenna for high-temperature plasma diagnosis," Microw. Opt. Technol. Lett., Vol. 62, No. 3, 1335-1340, 2020.
doi:10.1002/mop.32148 Google Scholar
7. Kirtania, S. G., et al., "Flexible antennas: A review," Micromachines 2020, Vol. 11, No. 9, 847, Sep. 2020. Google Scholar
8. Sanders, J. W., J. Yao, and H. Huang, "Microstrip patch antenna temperature sensor," IEEE Sens. J., Vol. 15, No. 9, 5312-5319, Sep. 2015.
doi:10.1109/JSEN.2015.2437884 Google Scholar
9. Starko-Bowes, R., et al., "Higherature polaritons in ceramic nanotube antennas," Nano Lett., Vol. 19, No. 12, 8565-8571, 2019.
doi:10.1021/acs.nanolett.9b03059 Google Scholar
10. Watson, J. and G. Castro, "A review of high-temperature electronics technology and applications," Journal of Materials Science: Materials in Electronics, Vol. 26, No. 12, 9226-9235, 2015.
doi:10.1007/s10854-015-3459-4 Google Scholar
11. Sun, C., Z. Zhang, and W. Ouyang, "All metal focusing transmitarray antenna for high-temperature plasma diagnosis," IEEE Access, Vol. 9, 39727-39732, 2021.
doi:10.1109/ACCESS.2021.3064889 Google Scholar
12. Di Torino, P., et al., Proceedings of the 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC): IEEE APWC'19, 9th Ed., 2019.
13. Li, C. H., Y. C. Chen, T. L. Lin, and C. C. Kuoa, "A high-quality factor dielectric resonator antenna for use in a wireless high-temperature sensor," Ferroelectr. Lett. Sect., Vol. 47, No. 1-3, 40-49, 2020.
doi:10.1080/07315171.2020.1799633 Google Scholar
14. Chen, Y. C. and Y. C. You, "La(Mg0.5-xMexSn0.5)O3-based (Me = Ca, Sr) dielectric resonator antenna for use in a wireless high-temperature sensor," J. Ceram. Soc. Japan, Vol. 127, No. 9, 617-626, 2019.
doi:10.2109/jcersj2.19061 Google Scholar
15. Mo, L., et al., "Silver nanoparticles based ink with moderate sintering in flexible and printed electronics," Int. J. Mol. Sci., Vol. 20, No. 9, May 2019.
doi:10.3390/ijms20092124 Google Scholar
16. Mbanya Tchafa, F., J. Yao, and H. Huang, "Wireless interrogation of a high temperature antenna sensor without electronics," Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition, Vol. 9, Feb. 2017. Google Scholar
17. Omi, A. I., R. Islam, M. A. Maktoomi, C. Zakzewski, and P. Sekhar, "A novel analytical design technique for a wideband wilkinson power divider using dual-band topology," Sensors, Vol. 21, No. 19, 6330, Sep. 2021.
doi:10.3390/s21196330 Google Scholar
18. Omi, A. I., et al., "A new analytical design methodology for a three-section wideband Wilkinson power divider," Electron., Vol. 10, No. 19, 2332, Sep. 2021.
doi:10.3390/electronics10192332 Google Scholar
19. Islam, R., A. I. Omi, M. A. Maktoomi, C. Zakzewski, and P. Sekhar, "A new coupled-line based dual-band branch-line coupler with port-extensions," Progress In Electromagnetics Research M, Vol. 105, 21-30, 2021.
doi:10.2528/PIERM21081203 Google Scholar
20. Sagar, M. S. I., et al., "Application of machine learning in electromagnetics: Mini-review," Electron., Vol. 10, No. 22, 2752, Nov. 2021.
doi:10.3390/electronics10222752 Google Scholar
21. Geisheimer, J., S. Billington, D. Burgess, and G. Hopkins, Microstrip patch antenna for high temperature environments, US20070024505A1, Feb. 2006.
22. Wang, Y., Y. Jia, Q. Chen, and Y. Wang, "A passive wireless temperature sensor for harsh environment applications," Sensors, Vol. 8, No. 12, 7982-7995, 2008.
doi:10.3390/s8127982 Google Scholar
23. Liu, S., "Wireless temperature measurement system and methods of making and using same," Therm. Sensors Based Transistors, Sensors Actua Tors, Vol. 1, No. 2, 54-61, May 2010. Google Scholar
24. Kirtania, S. G., M. A. Riheen, S. U. Kim, K. Sekhar, A. Wisniewska, and P. K. Sekhar, "Inkjet printing on a new flexible ceramic substrate for Internet of Things (IoT) applications," Micromachines, Vol. 11, No. 9, 2020. Google Scholar