Vol. 95
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-04-30
High Temperature Antennas: a Review
By
Progress In Electromagnetics Research B, Vol. 95, 103-121, 2022
Abstract
The advent of space exploration and space warfare along with the deployment of advanced missiles, unmanned aircraft systems, and modern nuclear reactors has reignited the field of high temperature antennas. In this context, this article surveys the field of antennas that operate under harsh environments that are often characterized by high temperature. In this context, this article surveys the field of high temperature antennas. The choice of the substrate and the conductor for antenna implementation are discussed with emphasis on their thermal and electrical properties. Further, the different fabrication techniques to realize the antenna are discussed. The performance comparison of the different types of high temperature antennas are presented. Finally, the future prospects and inherent challenges in advancing research on antennas for extreme environments are detailed. The article concludes with insights into the new developments in the field of flexible antennas operable in hostile conditions.
Citation
Bachir Younes, Md. Samiul Islam Sagar, Asif Iftekhar Omi, Noah Riley Allison, Danielle Gedlick, and Praveen Kumar Sekhar, "High Temperature Antennas: a Review," Progress In Electromagnetics Research B, Vol. 95, 103-121, 2022.
doi:10.2528/PIERB22030704
References

1. Ren, X., "High temperature materials characterization and sensor application," Electron. Theses Diss., 2304, Jan. 2012, Accessed: Dec. 25, 2021, [Online]. Available: https://stars.library.ucf.edu/etd/2304.

2. Lu, F., et al., "Highly sensitive reentrant cavity-microstrip patch antenna integrated wireless passive pressure sensor for high temperature applications," J. Sensors, Vol. 2017, 1-10, 2017.
doi:10.1155/2017/3417562

3. Tchafa, F. E. M., "Wireless antenna sensors for boiler condition monitoring,", 2018.

4. Rani, S., A. Marwaha, and S. Marwaha, "Investigation of substrate materials for graphene oxide absorber loaded antenna array increased ambient temperature," Photonic Netw. Commun., Vol. 40, No. 2, 94-102, 2020.
doi:10.1007/s11107-020-00908-6

5. Yu, Y., B. Han, and F. Xia, "PDC-SiAlCN ceramic based wireless passive temperature sensors using integrated resonator/antenna up to 1100C," Sens. Rev., Vol. 40, No. 1, 62-70, 2020.
doi:10.1108/SR-12-2018-0337

6. Zhao, C., X. Li, C. Sun, Y. Liu, and W. Ouyang, "Design of point focusing lens antenna for high-temperature plasma diagnosis," Microw. Opt. Technol. Lett., Vol. 62, No. 3, 1335-1340, 2020.
doi:10.1002/mop.32148

7. Kirtania, S. G., et al., "Flexible antennas: A review," Micromachines 2020, Vol. 11, No. 9, 847, Sep. 2020.

8. Sanders, J. W., J. Yao, and H. Huang, "Microstrip patch antenna temperature sensor," IEEE Sens. J., Vol. 15, No. 9, 5312-5319, Sep. 2015.
doi:10.1109/JSEN.2015.2437884

9. Starko-Bowes, R., et al., "Higherature polaritons in ceramic nanotube antennas," Nano Lett., Vol. 19, No. 12, 8565-8571, 2019.
doi:10.1021/acs.nanolett.9b03059

10. Watson, J. and G. Castro, "A review of high-temperature electronics technology and applications," Journal of Materials Science: Materials in Electronics, Vol. 26, No. 12, 9226-9235, 2015.
doi:10.1007/s10854-015-3459-4

11. Sun, C., Z. Zhang, and W. Ouyang, "All metal focusing transmitarray antenna for high-temperature plasma diagnosis," IEEE Access, Vol. 9, 39727-39732, 2021.
doi:10.1109/ACCESS.2021.3064889

12. Di Torino, P., et al., Proceedings of the 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC): IEEE APWC'19, 9th Ed., 2019.

13. Li, C. H., Y. C. Chen, T. L. Lin, and C. C. Kuoa, "A high-quality factor dielectric resonator antenna for use in a wireless high-temperature sensor," Ferroelectr. Lett. Sect., Vol. 47, No. 1-3, 40-49, 2020.
doi:10.1080/07315171.2020.1799633

14. Chen, Y. C. and Y. C. You, "La(Mg0.5-xMexSn0.5)O3-based (Me = Ca, Sr) dielectric resonator antenna for use in a wireless high-temperature sensor," J. Ceram. Soc. Japan, Vol. 127, No. 9, 617-626, 2019.
doi:10.2109/jcersj2.19061

15. Mo, L., et al., "Silver nanoparticles based ink with moderate sintering in flexible and printed electronics," Int. J. Mol. Sci., Vol. 20, No. 9, May 2019.
doi:10.3390/ijms20092124

16. Mbanya Tchafa, F., J. Yao, and H. Huang, "Wireless interrogation of a high temperature antenna sensor without electronics," Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition, Vol. 9, Feb. 2017.

17. Omi, A. I., R. Islam, M. A. Maktoomi, C. Zakzewski, and P. Sekhar, "A novel analytical design technique for a wideband wilkinson power divider using dual-band topology," Sensors, Vol. 21, No. 19, 6330, Sep. 2021.
doi:10.3390/s21196330

18. Omi, A. I., et al., "A new analytical design methodology for a three-section wideband Wilkinson power divider," Electron., Vol. 10, No. 19, 2332, Sep. 2021.
doi:10.3390/electronics10192332

19. Islam, R., A. I. Omi, M. A. Maktoomi, C. Zakzewski, and P. Sekhar, "A new coupled-line based dual-band branch-line coupler with port-extensions," Progress In Electromagnetics Research M, Vol. 105, 21-30, 2021.
doi:10.2528/PIERM21081203

20. Sagar, M. S. I., et al., "Application of machine learning in electromagnetics: Mini-review," Electron., Vol. 10, No. 22, 2752, Nov. 2021.
doi:10.3390/electronics10222752

21. Geisheimer, J., S. Billington, D. Burgess, and G. Hopkins, Microstrip patch antenna for high temperature environments, US20070024505A1, Feb. 2006.

22. Wang, Y., Y. Jia, Q. Chen, and Y. Wang, "A passive wireless temperature sensor for harsh environment applications," Sensors, Vol. 8, No. 12, 7982-7995, 2008.
doi:10.3390/s8127982

23. Liu, S., "Wireless temperature measurement system and methods of making and using same," Therm. Sensors Based Transistors, Sensors Actua Tors, Vol. 1, No. 2, 54-61, May 2010.

24. Kirtania, S. G., M. A. Riheen, S. U. Kim, K. Sekhar, A. Wisniewska, and P. K. Sekhar, "Inkjet printing on a new flexible ceramic substrate for Internet of Things (IoT) applications," Micromachines, Vol. 11, No. 9, 2020.