Vol. 97
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-11-24
An Optimization Analytical Method for Synchronous Machine Model Design from Operational Inductance Ld(S )
By
Progress In Electromagnetics Research B, Vol. 97, 115-130, 2022
Abstract
This paper presents an analytical method for the optimal estimation of time constants of synchronous machine from Standstill Frequency Response Testing (SSFR). We show that the analytical method is advantageous over the conventional one since the latter is based on curve fitting representing the variation of the operational inductance as a function of the frequency and provides in accurate and non-unique solutions. In fact, the analytical method applies the standard theory of linear systems to locate the values of poles and zeros in the frequency response and determines the optimal order of the equivalent circuit that can model the machine accurately. The proposed method is simple, practicable and effective. However, it needs an optimisation process based on parameter differentiation, to improve the values of time constants. Based on the measured data, realistic tests are given to show the advantages of the method.
Citation
Farid Leguebedj, Djamel Boukhetala, and Mohamed Tadjine, "An Optimization Analytical Method for Synchronous Machine Model Design from Operational Inductance Ld(S )," Progress In Electromagnetics Research B, Vol. 97, 115-130, 2022.
doi:10.2528/PIERB22070103
References

1. Aghamohammadi, M. R., A. Beik Khormizi, and M. Rezaee, "Effect of generator parameters inaccuracy on transient stability performance," Power and Energy Engineering Conference (APPEEC), 1-5, Mar. 2010.        Google Scholar

2. Ghomi, M. and Y. N. Sarem, "Review of synchronous generator parameters estimation and model identification," 2007 42nd International Universities Power Engineering Conference, 228-235, 2007.
doi:10.1109/UPEC.2007.4468951        Google Scholar

3. Kamwa, I., M. Pilote, H. Carle, P. Viarouge, B. Mpanda-Mabwe, and M. Crappe, "Computer software to automate the graphical analysis of sudden-short-circuit oscillograms of large synchronous machines," IEEE Trans. Energy Convers., Vol. 10, No. 3, 399-406, Sep. 1995.
doi:10.1109/60.464860        Google Scholar

4. Kamwa, I., P. Viarouge, and R. Mahfoudi, "Phenomenological models of large synchronous machines from short-circuit tests during commissioning --- A classical/modern approach," IEEE Trans. Energy Convers., Vol. 9, No. 1, 85-97, Mar. 1994.
doi:10.1109/60.282480        Google Scholar

5. "IEEE guide for test procedures for synchronous machines part iacceptance and performance testing Part II. Test procedures and parameter determination for dynamic analysis," IEEE Std 115-2009 Revis. IEEE Std 115-1995, 1-219, May 2010.        Google Scholar

6. Sellschopp, F. S. and M. A. Arjona, "DC decay test for estimating d-axis synchronous machine parameters: A two-transfer-function approach," IEE Proc. --- Electr. Power Appl., Vol. 153, No. 1, 123-128, Jan. 2006.
doi:10.1049/ip-epa:20050248        Google Scholar

7. Sellschopp, F. S. and M. A. Arjona, "Semi-analytical method for determining d-axis synchronous generator parameters using the dc step voltage test," IEE Proc. --- Electr. Power Appl., Vol. 1, No. 3, 348-354, May 2007.
doi:10.1049/iet-epa:20060376        Google Scholar

8. Maurer, F., T. Xuan, and J. Simond, "Tow full parameter identification methods for synchronous machine applying DC-decays tests for a rotor in arbitrary position," IEEE Transactions on Industry Applications, Vol. 53, No. 4, 3505-3518, Jul.-Aug. 2017.
doi:10.1109/TIA.2017.2688462        Google Scholar

9. Wamkeue, R., C. Jolette, and I. Kamwa, "Advanced modeling of a synchronous generator under line-switching and load-rejection tests for isolated grid applications," IEEE Trans. Energy Convers., Vol. 25, No. 3, 680-689, Sep. 2010.
doi:10.1109/TEC.2010.2043360        Google Scholar

10. Hiramatsu, D., M. Kakiuchi, K. Nagakura, Y. Uemura, K. Koyanagi, K. Hirayama, S. Nagano, R. Nagura, and K. Nagasaka, "Analytical study on generator load rejection characteristic using advanced equivalent circuit," 2006 IEEE Power Engineering Society General Meeting, 18-22, Montreal, QC, Jun. 2006.        Google Scholar

11. Melgoza, J. J. R., G. T. Heydt, A. Keyhani, B. L. Agrawal, and D. Selin, "An algebraic approach for identifying operating point dependent parameters of synchronous machines using orthogonal series expansions," IEEE Trans. Energy Convers., Vol. 16, No. 1, 92-98, Mar. 2001.
doi:10.1109/60.911410        Google Scholar

12. Melgoza, J. J. R., G. T. Heydt, A. Keyhani, B. L. Agrawal, and D. Selin, "Synchronous machine parameter estimation using the Hartley series," IEEE Trans. Energy Convers., Vol. 16, No. 1, 49-54, Mar. 2001.        Google Scholar

13. Rengifo, C. F., C. Giron, J. Palechor, A. Diego, and M. Bravo, "Identification of a synchronous generator parameters using recursive least squares and kalman filter," 20 Revista Ciencia en Desarrollo, Vol. 12, No. 1, 13-21, Jan.-Jun. 2021.        Google Scholar

14. Shariati, O., A. A. M. Zin, and M. R. Aghamohammadi, "Application of neural network observer for on-line estimation of salient-pole synchronous generator's dynamic parameters using the operating data," 2011 4th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), 1-9, 2011.        Google Scholar

15. Henrique, L., D. Kornrumpf, and S. I. Nabeta, "Deterination of synchronous parameters through the SSFR test and artificial neural networks," The 9th International Conference on Power Electronics, Machines and Drives (PMD 2018), 2018.        Google Scholar

16. Fard, R. D., M. Karrari, and O. P. Malik, "Synchronous generator model identification using Volterra series," IEEE Power Engineering Society General Meeting, Vol. 2, 1344-1349, 2004.        Google Scholar

17. Sen, S. K. and B. Adkins, "The application of the frequency response method to electrical machines," Proc. IEE, Vol. 103, No. 4, 378-391, 1956.        Google Scholar

18. Belqorchi, A., U. Karragac, J. Mehseredjian, and I. Kamwa, "Standstill frequency response test and validation of a large Hy-drogenerator," IEEE Transactions on Power Systems, Vol. 34, No. 3, 2261-2269, May 2019.        Google Scholar

19. Sellschopp, F. S. and M. A. Arjona, "Determination of synchronous machine parameters using standstill frequency response tests at different excitation levels," 2007 IEEE International Electric Machines & Drives Conference, Vol. 2, 1014-1019, 2007.        Google Scholar

20. Kutt, F., S. Racewicz, and M. Michna, "SSFR test of synchronous machine for different saturation levels using finite-element method," IECON 2014 --- 40th Annual Conference of the IEEE Industrial Electronics Society, 907-{911, 2014.        Google Scholar

21. Radjeai, H., A. Barakat, S. Tnani, and G. Champenois, "Identification of synchronous machine by Standstill Frequency Response (SSFR) method influence of the stator resistance," 2010 XIX International Conference on Electrical Machines (ICEM), 1-5, 2010.        Google Scholar

22. "IEEE guide for synchronous generator modeling practices and applications in power system stability analyses," IEEE Std 1110-2002 Revis. IEEE Std 1110-1991, 1-72, 2003.        Google Scholar

23. Dandeno, P. L. and A. T. Poray, "Development of detailed turbogenerator equivalent circuits from standstill frequency response measurements," IEEE Trans. Power Appar. Syst., Vol. 100, No. 4, 1646-1655, Apr. 1981.        Google Scholar

24. Hernandez-Anaya, O., T. Niewierowicz, E. Campero-Littlewood, and R. Escarela-Perez, "Noise impact in the determination of synchronous machine equivalent circuits using SSFR data," 2006 3rd International Conference on Electrical and Electronics Engineering, 1-4, 2006.        Google Scholar

25. Firouzi, B. B., E. Jamshidpour, and T. Niknam, "A new method for estimation of large synchronous generator parameters by genetic algorithm," World Applied Sciences Journal, Vol. 4, No. 3, 326-331, 2008.        Google Scholar

26. Srinivasan, G. K. and H. T. Srinivasan, "In situ parameter estimation of synchronous machines using genetic algorithm method," Advances in Electrical and Electronic Engineering, Vol. 14, No. 3, 254-266, 2016.        Google Scholar

27. Bendaoud, E., H. Radjeai, and O. Boutalbi, "Parameters identification of synchronous machine based on particle swarm optimization," The International Conference on Energy and Green Computing (ICEGC'2021), Vol. 336, 00052, 2022.        Google Scholar

28. Bendaoud, E., H. Radjeai, and O. Boutalbi, "Identification of nonlinear synchronous generator parameters using stochastic fractal search algorithm," Journal of Control, Automation and Electrical Systems, Vol. 32, 1639-1651, 2021.        Google Scholar

29. Krause, P. C., "Operational impedances and time constants of synchronous machines," Analysis of Electric Machinery, 271-297, McGraw-Hill, 1986.        Google Scholar

30. Electric Power Research Institute "Compendium of the EPRI Workshop on determination of synchronous machine stability study constants,", by N. E. I Parsons, Aug. 1980.        Google Scholar

31. Niewierowicz, T., R. Escarela-Perez, and E. Campero-Littlewood, "Hybrid genetic algorithm for the identification of high-order synchronous machine two-axis equivalent circuits," Computers and Electrical Engineering, Vol. 29, 5055-22, 2003.        Google Scholar

32. Kano, T., H. Nakayama, T. Ara, and T. Matsumura, "A calculation method of equivalent circuits constants with mutual leakage reactance on synchronous machine with damper winding," IEEJ 2007, Vol. 127-D, No. 7, 761-766, 2007.        Google Scholar

33. Pao-la-or, P., T. Kulworawanichpong, and A. Oonsivilai, "Frequency domain parameter estimation of a synchronous generator using bi-objective genetic algorithms," Proceeding of the 7th WSEAS International Conference on Simulation, Modeling and Optimisation, 429-433, Beijing, China, Sep. 200.        Google Scholar

34. Walton, A., "A systematic method for the determination of the parameters of synchronous machines from the results of frequency response tests," IEEE Trans. Energy Convers., Vol. 15, No. 2, 218-223, Jun. 2000.        Google Scholar