1. Thumm, M., "State-of-the-art of high-power gyro-devices and free electron masers," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 41, No. 1, 1-140, 2020.
doi:10.1007/s10762-019-00631-y Google Scholar
2. Felch, K. L., B. G. Danly, H. R. Jory, K. E. Kreischer, W. Lawson, B. Levuson, and R. J. Temkin, "Characteristics and applications of fast-wave gyro-devices," Proceedings of the IEEE, Vol. 87, No. 5, 752-781, 1999.
doi:10.1109/5.757254 Google Scholar
3. Singh, U., N. Kumar, T. P. Singh, et al. "A review on the applications of high power, high frequency microwave source: Gyrotron," J. Fusion Energy: Springer, Vol. 30, 257-276, 2011. Google Scholar
4. Krier, L., I. Gr. Pagonakis, K. A. Avramidis, G. Gantenbein, S. Illy, J. Jelonnek, J. Jin, H. P. Laqua, A. Marek, D. Moseev, M. Thumm, and W7-X Team, "Theoretical investigation on possible operation of a 140 GHz 1 MW gyrotron at 175 GHz for CTS plasma diagnostics at W7-X," Physics of Plasmas, Vol. 27, 113107, 2020.
doi:10.1063/5.0022151 Google Scholar
5. Kumar, A., N. Kumar, U. Singh, V. Vyas, and A. K. Sinha, "RF behavior and cavity design for 0.3 THz, 4 kW gyrotron for material processing application," Infrared Physics & Technology, Vol. 55, No. 4, 337-344, 2012.
doi:10.1016/j.infrared.2012.02.008 Google Scholar
6. Baja, V. S., M. K. Hornstein, K. E. Kreischer, J. R. Sirigir, P. P. Wosko, M. L. Mak-Jurkauska, J. Herzfel, R. J. Temki, and R. G. Griffin, "250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR," Journal of Magnetic Resonance, Vol. 189, 251-279, 2007.
doi:10.1016/j.jmr.2007.09.013 Google Scholar
7. Edgcombe, C. J., Gyrotron Oscillators --- Their Principles and Practice, Taylor and Francis, London, 1993.
8. McDermott, D. B., N. C. Luhmann, Jr., D. S. Furuno, A. Kupiszewski, and H. R. Jory, "Operation of a millimeter-wave harmonic gyrotron," J. of Infrared Milli. Waves, Vol. 4, No. 4, 639-664, 1983.
doi:10.1007/BF01009401 Google Scholar
9. Danly, B. G. and R. J. Temkin, "Generalized nonlinear harmonic gyrotron theory," Phys. Fluids, Vol. 29, 561-567, 1986.
doi:10.1063/1.865446 Google Scholar
10. Geng, Z., R. Zhang, X. Yan, Y. Liao, and S. Xu, "Design and simulation of a W-band gyrotron oscillator based on self-consistent nonlinear theory," Microw. Opt. Technol. Lett., Vol. 62, 3175-3179, 2020.
doi:10.1002/mop.32458 Google Scholar
11. Singh, A. and P. K. Jain, "RF behavior of a 35 GHz conventional cavity gyrotron using multimode analysis and PIC simulation," Journal of Electromagnetic Waves and Application, Vol. 35, No. 18, 2428-2446, 2021, doi: 10.1080/0920507.2021.1952655.
doi:10.1080/09205071.2021.1952655 Google Scholar
12. Singh, U., U. Goswami, H. Khatun, N. Kumar, N. Shekhawat, A. Kumar, V. Yadav, M. K. Sharma, A. Mishra, S. K. Sharma, M. K. Alaria, A. Bera, R. R. Rao, and A. K. Sinha, "P3-1: Design of 42 GHz, 200 kW gyrotron," 2010 IEEE International Vacuum Electronics Conference (IVEC), 331-332, 2010, doi: 1.1109/IVELE.2010.5503414.
doi:10.1109/IVELEC.2010.5503414 Google Scholar
13. Kartikeyan, M. V., A. Kumar, S. Kamakshi, P. K. Jain, S. Illy, E. Borie, B. Piosczyk, and M. K. Thumm, "RF-behavior of a 200 kW, CW gyrotron," IEEE Trans. Plasma Science, Vol. 20, No. 3, 631-636, June 2008.
doi:10.1109/TPS.2008.923762 Google Scholar
14. Ludeking, L., Manual of MAGIC Tool Suite, ATK Mission Research Corporation, 2007.
15. Kreischer, K. E., B. G. Danly, J. B. Schutkeker, and R. J. Temkin, "The design of megawatt gyrotrons," IEEE Trans. Plasma Science, Vol. 13, No. 6, December 1985.
doi:10.1109/TPS.1985.4316447 Google Scholar
16. Singh, A., B. Ravi Chandra, and P. K. Jain, "Multimode behavior of a 42 GHz, 200 kW gyrotron," Progress In Electromagnetics Research B, Vol. 42, 75-91, 2012. Google Scholar