Vol. 97
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-11-12
A Review on Materials and Reconfigurable Antenna Techniques for Wireless Communications: 5G and IoT Applications
By
Progress In Electromagnetics Research B, Vol. 97, 91-114, 2022
Abstract
Compact wireless devices have been proposed as a result of the introduction of wireless communication systems, allowing more space to be used for other electronic components. A reconfigurable antenna is critical in today's cutting-edge wireless technologies. Reconfigurable antennas can perform a variety of tasks depending on their operating frequency, radiation pattern and polarization. Dynamic tuning can be done by altering mechanical, electrical, physical, or optical switches to run a certain switching mechanism. This can be accomplished using a single reconfigurable antenna that allows the user to customize a range of performance attributes such as resonant frequency, polarization and radiation pattern to meet their specific requirements. This paper looks into different types of reconfigurable antenna switching mechanisms, different types of effective implementation techniques, different types of reconfigurable antennas, and some recently proposed reconfigurable antenna designs for the Fifth Generation (5G) and IoT applications in various wireless communication systems.
Citation
Rayirathil Kadavath Athira Mohan, and Kanagasabapathi Girirajan Padmasine, "A Review on Materials and Reconfigurable Antenna Techniques for Wireless Communications: 5G and IoT Applications," Progress In Electromagnetics Research B, Vol. 97, 91-114, 2022.
doi:10.2528/PIERB22092005
References

1. Isa, S. R., "Reconfigurable pattern patch antenna for Mid-band 5G: A review," Computers, Materials & Continua, Vol. 70, No. 2, 2699-2725, 2022.
doi:10.32604/cmc.2022.019769        Google Scholar

2. Patir, B., "A review on various techniques of microstrip patch antenna design for wireless application," International Journal of Computer Applications, Vol. 1, 15-17, 2015.        Google Scholar

3. Sun, M., Z. Zhang, F. Zhang, and A. Chen, "L/S multiband frequency reconfigurable antenna for satellite applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2617-2621, 2019.
doi:10.1109/LAWP.2019.2945624        Google Scholar

4. Kumar, N., P. Kumar, and M. Sharma, "Reconfigurable antenna and performance optimization approach," Wireless Personal Communications, Vol. 112, 2187-2212, 2020.
doi:10.1007/s11277-020-07145-0        Google Scholar

5. Acharjya, D. and M. K. Geetha, Internet of Things: Novel Advances and Envisioned Applications, Springer International Publishing, 2017.
doi:10.1007/978-3-319-53472-5

6. Dildar, H., F. Althobiani, I. Ahmad, W. U. R. Khan, S. Ullah, N. Mufti, and A. Glowacz, "Design and experimental analysis of multiband frequency reconfigurable antenna for 5G and sub-6 GHz wireless communication," Micromachines, Vol. 12, No. 1, 32, 2022.
doi:10.3390/mi12010032        Google Scholar

7. Mokayef, M. and M. A. Summakieh, "An ultra-wideband for IoT connectivity," International Journal of Internet of Things and Web Services, Vol. 2, 76-79, 2017.        Google Scholar

8. Kishore, N., A. Prakash, and A. V. S. Tripathi, "A multiband microstrip patch antenna with defected ground structure for its applications," Microwave and Optical Technology Letters, Vol. 58, No. 12, Dec. 2016.
doi:10.1002/mop.30151        Google Scholar

9. Singh, G., B. K. Kanaujia, V. K. Pandey, D. Gangwar, and S. Kumar, "Design of compact dual-band patch antenna loaded with D-shaped complementary split ring resonator," Journal of Electromagnetic Waves and Applications, Vol. 33, 2096-2111, 2019.
doi:10.1080/09205071.2019.1663274        Google Scholar

10. Awan, W. A., N. Hussain, S. A. Naqvi, A. Iqbal, R. Striker, D. Mitra, and B. D. Braaten, "A miniaturized wideband and multiband on-demand reconfigurable antenna for compact and portable devices," AEU --- International Journal of Electronics and Communications, Vol. 122, 153266, ISSN 1434-8411, 2020.        Google Scholar

11. Mohanta, H. C., A. Z. Kouzani, and S. K. Mandal, "Reconfigurable antennas and their applications," Universal journal of Electrical and Electronic Engineering, Vol. 6, No. 4, 239-258, 2019.
doi:10.13189/ujeee.2019.060406        Google Scholar

12. Elwi, T. A., "Electromagnetic band gap structures based on ultrawideband microstrip antenna," Microwave and Optical Technology Letters, Vol. 59, No. 4, 827-834, 2017.
doi:10.1002/mop.30397        Google Scholar

13. Li, P. K., C. J. You, H. F. Yu, and Y. J. Cheng, "Mechanically pattern reconfigurable dual-band antenna with omnidirectional/directional pattern for 2.4/5 GHz WLAN application," Microwave and Optical Technology Letters, Vol. 59, No. 10, 2526-2531, 2017.
doi:10.1002/mop.30778        Google Scholar

14. Chandra, S. and S. Dwivedi, "Comparative analysis of reconfigurable patch antenna array for different liquid crystal substrates," URSI Asia-Pacific Radio Science Conference (AP-RASC), 2019.        Google Scholar

15. Parchin, N. O., H. J. Basherlou, Y. I. A. Al-Yasir, A. M. Abdulkhaleq, and R. A. Abd-Alhameed, "Reconfigurable antennas: Switching techniques --- A survey," Electronics (Switzerland), Vol. 9, No. 336, 1-14, 2020.        Google Scholar

16. Qin, P., F.Wei, and Y. J. Guo, "A wideband-to-narrowband tunable antenna using a reconfigurable filter," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2282-2285, 2017.
doi:10.1109/TAP.2015.2402295        Google Scholar

17. Sahu, N. K. and A. K. Sharma, "An investigation of pattern and frequency reconfigurable microstrip slot antenna using PIN diodes," 2017 Progress In Electromagnetics Research Symposium | Spring (PIERS), 971-976, St Petersburg, Russia, May 22-25, 2017.        Google Scholar

18. Li, T., H. Zhai, L. Li, and C. Liang, "Frequency-reconfigurable bow-tie antenna with a wide tuning range," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1549-1552, 2018.
doi:10.1007/s00542-018-3863-9        Google Scholar

19. Xu, Y., Y. Tian, B. Zhang, J. Duan, and L. Yan, "A novel RF MEMS switch on frequency reconfigurable antenna application," Microsyst. Technol., Vol. 24, No. 9, 3833-3841, 2018.
doi:10.1109/ACCESS.2018.2850926        Google Scholar

20. Cai, Y.-M., K. Li, Y. Z. Yin, S. Gao, W. Hu, and L. Zhao, "A low-profile frequency reconfigurable grid-slotted patch antenna," IEEE Access, Vol. 6, 36305-36312, Jun. 2018.
doi:10.1109/TAP.2018.2826657        Google Scholar

21. Tran, H. H., N. Nguyen-Trong, T. T. Le, A. M. Abbosh, and H. C. Park, "Low-profile wideband high-gain reconfigurable antenna with quad polarization diversity," IEEE Trans. Antennas Propag., Vol. 66, No. 7, 3741-3746, Jul. 2018.
doi:10.1587/transcom.2017EBP3253        Google Scholar

22. Jin, G., D. Liu, M. Li, and Y. Cui, "A pattern reconfigurable antenna with broadband circular polarization," IEICE Transactions on Communications, Vol. E101, No. 5, 1257-1261, May 2018.
doi:10.1109/TAP.2019.2918476        Google Scholar

23. Thummaluru, S. R., M. Ameen, and R. K. Chaudhary, "Four-port MIMO cognitive radio system for mid-band 5G applications," IEEE Trans. Antennas Propag., Vol. 67, No. 8, 5634-5645, 2019.
doi:10.1109/LAWP.2018.2806355        Google Scholar

24. Zainarry, S. N. M., N. Nguyen-Trong, and C. Fumeaux, "A frequency and pattern-reconfigurable two-element array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 617-620, 2018.
doi:10.1109/JIOT.2021.3050383        Google Scholar

25. Hussain "Shared-aperture slot-based sub-6-GHz and Mm-Wave IoT antenna for 5G applications," IEEE Internet of Things Journal, Vol. 8, No. 13, 10807-10814, 2021.        Google Scholar

26. Tran, H. H. and T. T. Le, "A meta surface based low-profile reconfigurable antenna with pattern diversity," AEU --- International Journal of Electronics and Communications, Vol. 115, 15303, 2019.
doi:10.13189/ujeee.2019.060406        Google Scholar

27. Mohanta, H. C., A. Z. Kouzani, and S. K. Mandal, "Reconfigurable antennas and their applications," Universal Journal of Electrical and Electronic Engineering, Vol. 6, No. 4, 239-258, 2019.        Google Scholar