1. Austin, A. C. M. and C. D. Sarris, "Efficient analysis of geometrical uncertainty in the FDTD method using polynomial chaos with application to microwave circuits," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 12, 4293-4301, Dec. 2013.
doi:10.1109/TMTT.2013.2281777 Google Scholar
2. Hastings, F. D., J. B. Schneider, and S. L. Broschat, "A Monte-Carlo FDTD technique for rough surface scattering," IEEE Trans. Antennas Propag., Vol. 43, No. 11, 1183-1191, Nov. 1995.
doi:10.1109/8.475089 Google Scholar
3. Xiu, D. and G. E. Karniadakis, "The Wiener-Askey polynomial chaos for stochastic differential equations," SIAM J. Sci. Comput., Vol. 24, No. 2, 619-644, 2002.
doi:10.1137/S1064827501387826 Google Scholar
4. Rong, A. and A. C. Cangellaris, "Transient analysis of distributed electromagnetic systems exhibiting stochastic variability in material parameters," 2011 XXXth URSI General Assembly and Scientific Symposium, 1-4, Istanbul, Turkey, Aug. 2011. Google Scholar
5. Shen, J. and J. Chen, "An efficient polynomial chaos method for uncertainty quantification in electromagnetic simulations," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, Jul. 2010. Google Scholar
6. Salis, C., N. Kantartzis, and T. Zygiridis, "Efficient uncertainty assessment in EM problems via dimensionality reduction of polynomial-chaos expansions," Technologies, Vol. 7, No. 2, 2019.
doi:10.3390/technologies7020037 Google Scholar
7. Spina, D., F. Ferranti, T. Dhaene, L. Knockaert, G. Antonini, and D. Vande Ginste, "Variability analysis of multiport systems via polynomial-chaos expansion," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 8, 2329-2338, Aug. 2012.
doi:10.1109/TMTT.2012.2202685 Google Scholar
8. Parussini, L. and V. Pediroda, "Investigation of multi geometric uncertainties by different polynomial chaos methodologies using a fictitious domain solver," CMES Comp. Model. Eng., Vol. 23, No. 1, 29-52, 2008. Google Scholar
9. Salis, C. I., T. T. Zygiridis, N. V. Kantartzis, and C. S. Antonopoulos, "An anisotropic polynomial-chaos technique for assessing uncertainties in microwave circuits," 2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG), 1-2, Paris, France, Jul. 2019. Google Scholar
10. Blatman, G., "Adaptive sparse polynomial chaos expansions for uncertainty propagaton and sensitivity analysis,", Ph.D. dissertation, Universite Blaise Pascal, Clermont-Ferrand, France, 2009. Google Scholar
11. Smolyak, S., "Quadrature and interpolation formulas for tensor products of certain classes of functions," Dokl. Akad. Nauk SSSR, Vol. 148, No. 5, 1042-1045, 1963. Google Scholar
12. Peng, J., J. Hampton, and A. Doostan, "A weighted ℓ1-minimization approach for sparse polynomial chaos expansions," J. Comput. Phys., Vol. 267, 92-111, 2014.
doi:10.1016/j.jcp.2014.02.024 Google Scholar
13. Salis, C. and T. Zygiridis, "Dimensionality reduction of the polynomial chaos technique based on the method of moments," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 12, 2349-2353, Dec. 2018.
doi:10.1109/LAWP.2018.2874521 Google Scholar
14. Beddek, K., S. Clenet, O. Moreau, V. Costan, Y. Le Menach, and A. Benabou, "Adaptive method for non-intrusive spectral projection --- Application on a stochastic eddy current NDT problem," IEEE Trans. Magn., Vol. 48, No. 2, 759-762, 2012.
doi:10.1109/TMAG.2011.2175204 Google Scholar
15. Thapa, M., S. B. Mulani, and R. W. Walters, "Adaptive weighted least-squares polynomial chaos expansion with basis adaptivity and sequential adaptive sampling," Comput. Methods Appl. Mech. Eng., Vol. 360, 112759, 2020.
doi:10.1016/j.cma.2019.112759 Google Scholar
16. Ahadi, M. and S. Roy, "Sparse linear regression (SPLINER) approach for efficient multidimensional uncertainty quantification of high-speed circuits," IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., Vol. 35, No. 10, 1640-1652, Oct. 2016.
doi:10.1109/TCAD.2016.2527711 Google Scholar
17. Salis, C., N. Kantartzis, and T. Zygiridis, "An adaptive sparse polynomialchaos technique based on anisotropic indices," COMPEL, Vol. 39, No. 3, 691-707, May 2020.
doi:10.1108/COMPEL-10-2019-0392 Google Scholar
18. Yan, L. and T. Zhou, "Adaptive multi-fidelity polynomial chaos approach to bayesian inference in inverse problems," J. Comput. Phys., Vol. 381, 110-128, 2019.
doi:10.1016/j.jcp.2018.12.025 Google Scholar
19. Yangtian, L., H. Li, and G. Wei, "Dimension-adaptive algorithm-based PCE for models with many model parameters," Eng. Comput., Vol. 37, No. 2, 522-545, 2019.
doi:10.1108/EC-12-2018-0595 Google Scholar
20. Thapa, M., S. B. Mulani, and R. W. Walters, "Adaptive weighted leastsquares polynomial chaos expansion with basis adaptivity and sequential adaptive sampling," Comput. Methods Appl. Mech. Eng., Vol. 360, 112759, 2020.
doi:10.1016/j.cma.2019.112759 Google Scholar
21. Zhang, Z., T. A. El-Moselhy, I. M. Elfadel, and L. Daniel, "Stochastic testing method for transistor-level uncertainty quantification based on generalized polynomial chaos," IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., Vol. 32, No. 10, 1533-1545, 2013.
doi:10.1109/TCAD.2013.2263039 Google Scholar
22. Zygiridis, T., A. Papadopoulos, N. Kantartzis, and E. Glytsis, "Sparse polynomial-chaos models for stochastic problems with filtering structures," AEM, Vol. 8, No. 5, 51-58, 2019.
doi:10.7716/aem.v8i5.1328 Google Scholar
23. Blatman, G. and B. Sudret, "Adaptive sparse polynomial chaos expansion based on least angle regression," J. Comput. Phys., Vol. 230, No. 6, 2345-2367, 2011.
doi:10.1016/j.jcp.2010.12.021 Google Scholar
24. Ishigami, T. and T. Homma, "An importance quantification technique in uncertainty analysis for computer models," Proceedings --- First International Symposium on Uncertainty Modeling and Analysis, 398-403, 1990. Google Scholar
25. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Norwood, 2005.
26. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat., Vol. 23, No. 4, 377-382, Nov. 1981.
doi:10.1109/TEMC.1981.303970 Google Scholar
27. Shorbagy, M. E., R. M. Shubair, M. I. AlHajri, and N. K. Mallat, "On the design of millimetre-wave antennas for 5G," 2016 16th Mediterranean Microwave Symposium (MMS), 1-4, Nov. 2016. Google Scholar
28. "3ds.com, 2020, Electromagnetic systems --- Cst Studio Suite,", https://www.3ds.com/products-services/simulia/products/cst-studiosuite/electromagnetic-systems, accessed: 2020-03-10. Google Scholar
29. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159 Google Scholar