Vol. 97
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-11-03
Uncertainty Assessment of Stochastic EM Problems via an Adaptive Anisotropic Polynomial-Chaos Technique
By
Progress In Electromagnetics Research B, Vol. 97, 55-71, 2022
Abstract
A novel polynomial-chaos (PC) techninullque is implemented based on anisotropic index sets. The proposed scheme takes advantage of the effect of each random variable on the output parameter of interest and adaptively constructs the PC expansion. Particularly, the algorithm starts by generating bases via low and high reliability heuristics and builds a PC representation, until an error criterion is satisfied or until the maximum desired polynomial order is reached. Our method is tested on a variety of uncertainty problems, where the statistical moments of the outputs of interest are estimated. Numerical results prove the efficiency of the proposed approach, since accurate outcomes are obtained in lower computational times than other techniques.
Citation
Christos I. Salis, Nikolaos V. Kantartzis, and Theodoros T. Zygiridis, "Uncertainty Assessment of Stochastic EM Problems via an Adaptive Anisotropic Polynomial-Chaos Technique," Progress In Electromagnetics Research B, Vol. 97, 55-71, 2022.
doi:10.2528/PIERB22092523
References

1. Austin, A. C. M. and C. D. Sarris, "Efficient analysis of geometrical uncertainty in the FDTD method using polynomial chaos with application to microwave circuits," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 12, 4293-4301, Dec. 2013.
doi:10.1109/TMTT.2013.2281777        Google Scholar

2. Hastings, F. D., J. B. Schneider, and S. L. Broschat, "A Monte-Carlo FDTD technique for rough surface scattering," IEEE Trans. Antennas Propag., Vol. 43, No. 11, 1183-1191, Nov. 1995.
doi:10.1109/8.475089        Google Scholar

3. Xiu, D. and G. E. Karniadakis, "The Wiener-Askey polynomial chaos for stochastic differential equations," SIAM J. Sci. Comput., Vol. 24, No. 2, 619-644, 2002.
doi:10.1137/S1064827501387826        Google Scholar

4. Rong, A. and A. C. Cangellaris, "Transient analysis of distributed electromagnetic systems exhibiting stochastic variability in material parameters," 2011 XXXth URSI General Assembly and Scientific Symposium, 1-4, Istanbul, Turkey, Aug. 2011.        Google Scholar

5. Shen, J. and J. Chen, "An efficient polynomial chaos method for uncertainty quantification in electromagnetic simulations," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, Jul. 2010.        Google Scholar

6. Salis, C., N. Kantartzis, and T. Zygiridis, "Efficient uncertainty assessment in EM problems via dimensionality reduction of polynomial-chaos expansions," Technologies, Vol. 7, No. 2, 2019.
doi:10.3390/technologies7020037        Google Scholar

7. Spina, D., F. Ferranti, T. Dhaene, L. Knockaert, G. Antonini, and D. Vande Ginste, "Variability analysis of multiport systems via polynomial-chaos expansion," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 8, 2329-2338, Aug. 2012.
doi:10.1109/TMTT.2012.2202685        Google Scholar

8. Parussini, L. and V. Pediroda, "Investigation of multi geometric uncertainties by different polynomial chaos methodologies using a fictitious domain solver," CMES Comp. Model. Eng., Vol. 23, No. 1, 29-52, 2008.        Google Scholar

9. Salis, C. I., T. T. Zygiridis, N. V. Kantartzis, and C. S. Antonopoulos, "An anisotropic polynomial-chaos technique for assessing uncertainties in microwave circuits," 2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG), 1-2, Paris, France, Jul. 2019.        Google Scholar

10. Blatman, G., "Adaptive sparse polynomial chaos expansions for uncertainty propagaton and sensitivity analysis,", Ph.D. dissertation, Universite Blaise Pascal, Clermont-Ferrand, France, 2009.        Google Scholar

11. Smolyak, S., "Quadrature and interpolation formulas for tensor products of certain classes of functions," Dokl. Akad. Nauk SSSR, Vol. 148, No. 5, 1042-1045, 1963.        Google Scholar

12. Peng, J., J. Hampton, and A. Doostan, "A weighted ℓ1-minimization approach for sparse polynomial chaos expansions," J. Comput. Phys., Vol. 267, 92-111, 2014.
doi:10.1016/j.jcp.2014.02.024        Google Scholar

13. Salis, C. and T. Zygiridis, "Dimensionality reduction of the polynomial chaos technique based on the method of moments," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 12, 2349-2353, Dec. 2018.
doi:10.1109/LAWP.2018.2874521        Google Scholar

14. Beddek, K., S. Clenet, O. Moreau, V. Costan, Y. Le Menach, and A. Benabou, "Adaptive method for non-intrusive spectral projection --- Application on a stochastic eddy current NDT problem," IEEE Trans. Magn., Vol. 48, No. 2, 759-762, 2012.
doi:10.1109/TMAG.2011.2175204        Google Scholar

15. Thapa, M., S. B. Mulani, and R. W. Walters, "Adaptive weighted least-squares polynomial chaos expansion with basis adaptivity and sequential adaptive sampling," Comput. Methods Appl. Mech. Eng., Vol. 360, 112759, 2020.
doi:10.1016/j.cma.2019.112759        Google Scholar

16. Ahadi, M. and S. Roy, "Sparse linear regression (SPLINER) approach for efficient multidimensional uncertainty quantification of high-speed circuits," IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., Vol. 35, No. 10, 1640-1652, Oct. 2016.
doi:10.1109/TCAD.2016.2527711        Google Scholar

17. Salis, C., N. Kantartzis, and T. Zygiridis, "An adaptive sparse polynomialchaos technique based on anisotropic indices," COMPEL, Vol. 39, No. 3, 691-707, May 2020.
doi:10.1108/COMPEL-10-2019-0392        Google Scholar

18. Yan, L. and T. Zhou, "Adaptive multi-fidelity polynomial chaos approach to bayesian inference in inverse problems," J. Comput. Phys., Vol. 381, 110-128, 2019.
doi:10.1016/j.jcp.2018.12.025        Google Scholar

19. Yangtian, L., H. Li, and G. Wei, "Dimension-adaptive algorithm-based PCE for models with many model parameters," Eng. Comput., Vol. 37, No. 2, 522-545, 2019.
doi:10.1108/EC-12-2018-0595        Google Scholar

20. Thapa, M., S. B. Mulani, and R. W. Walters, "Adaptive weighted leastsquares polynomial chaos expansion with basis adaptivity and sequential adaptive sampling," Comput. Methods Appl. Mech. Eng., Vol. 360, 112759, 2020.
doi:10.1016/j.cma.2019.112759        Google Scholar

21. Zhang, Z., T. A. El-Moselhy, I. M. Elfadel, and L. Daniel, "Stochastic testing method for transistor-level uncertainty quantification based on generalized polynomial chaos," IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., Vol. 32, No. 10, 1533-1545, 2013.
doi:10.1109/TCAD.2013.2263039        Google Scholar

22. Zygiridis, T., A. Papadopoulos, N. Kantartzis, and E. Glytsis, "Sparse polynomial-chaos models for stochastic problems with filtering structures," AEM, Vol. 8, No. 5, 51-58, 2019.
doi:10.7716/aem.v8i5.1328        Google Scholar

23. Blatman, G. and B. Sudret, "Adaptive sparse polynomial chaos expansion based on least angle regression," J. Comput. Phys., Vol. 230, No. 6, 2345-2367, 2011.
doi:10.1016/j.jcp.2010.12.021        Google Scholar

24. Ishigami, T. and T. Homma, "An importance quantification technique in uncertainty analysis for computer models," Proceedings --- First International Symposium on Uncertainty Modeling and Analysis, 398-403, 1990.        Google Scholar

25. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Norwood, 2005.

26. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat., Vol. 23, No. 4, 377-382, Nov. 1981.
doi:10.1109/TEMC.1981.303970        Google Scholar

27. Shorbagy, M. E., R. M. Shubair, M. I. AlHajri, and N. K. Mallat, "On the design of millimetre-wave antennas for 5G," 2016 16th Mediterranean Microwave Symposium (MMS), 1-4, Nov. 2016.        Google Scholar

28. "3ds.com, 2020, Electromagnetic systems --- Cst Studio Suite,", https://www.3ds.com/products-services/simulia/products/cst-studiosuite/electromagnetic-systems, accessed: 2020-03-10.        Google Scholar

29. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159        Google Scholar