Search Results(13733)

2023-06-20
PIER C
Vol. 134, 1-10
Planar Multi Notch Band Antenna in-Band Gain Enhanced by Epsilon-Near-Zero Non-Absorptive Metasurface
Priyanka Usha , Niraj Kumar and Krishnan Chitra
This paper presents the design, fabrication, and characterization of a novel single layer non- absorbing metasurface with a broadband epsilon near zero (ENZ) property and its application in-band gain enhancement of triple notch band ultra-wideband (UWB) antenna. The proposed metasurface is made up of non-resonant metamaterial unit cells consisting of half ring slots in a circular patch on an FR4 dielectric substrate. Metasurface with unit cells arranged in a 2×2 lattice pattern is suspended 4 mm above the triple notch band antenna. The transmission and reflection properties of the metamaterial unit cell are analysed and optimised to ensure the coherent transmission from the metasurface. The non-absorbing property of the metasurface results in the minimal loss of electromagnetic waves. The proposed antenna system with metasurface has a size of 28×28×7.2 mm3. The measured results of fabricated antenna are compared with the simulated ones and are in good match. The results show that the gain of the antenna was enhanced by 1.3 dB, 2.8 dB, and 4 dB at 5 GHz, 7 GHz, and 9 GHz, respectively.
2023-06-20
PIER M
Vol. 117, 119-128
A Circular Split Ring Resonator Absorber with Graphene Material for Terahertz Communication Applications
Nagandla Prasad , Pokkunuri Pardhasaradhi , Boddapati Taraka Phani Madhav , Yarlagadda Ramakrishna and Yepuri Aarthi Hasitha
In this research article, we propose a split ring resonator (SRR) based metasurface absorber based on graphene material. The performance of the graphene-based absorber at terahertz frequencies can be altered by varying the chemical potential of graphene material. Because of its excellent tunability and optical responsiveness at terahertz frequency, graphene-based metamaterials have been widely used in optoelectronic devices, sensors, filters, and many more. The proposed structure contains three layers namely graphene-based patch as a conductive layer, lossy silicon as a dielectric layer, and finally gold as a bottom conductive layer. The proposed unit cell resonates at three different absorption peak frequencies of 2.91 THz, 8.1 THz, and 9.61 THz with operating frequency bands at (2.66 THz to 3.12 THz), (7.71 THz-8.47 THz), and (9.57 THz-9.63 THz), respectively. The purpose of this research is to present a thorough investigation of graphene-based THz metamaterial absorbers, including modeling and verification of the structure through an equivalent circuit approach. It is very much beneficial to understand the conductive phenomenon of graphene material by tuning the Fermi chemical potential and achieve a high percent level of absorption for the corresponding absorption frequency bands.
2023-06-20
PIER Letters
Vol. 111, 35-43
A Miniaturized Frequency Selective Rasorber with High Frequency Harmonic Suppression
Lei Deng , Shixing Yu and Na Kou
A frequency selective absorber for harmonic absorption (HA-FSR) is proposed in this paper. It consists of a miniaturized frequency selective surface (FSS) for harmonic suppression and a circuit analog absorber (CAA) for harmonic absorption. The frequency selective rasorber (FSR) unit is 6.7 mm × 6.7 mm (0.129λ × 0.129λ, where λ is the free space wavelength of 5.8 GHz). The simulation and measurement show that the HA-FSR can generate a transmission band from 4.51 GHz to 7.47 GHz and a -10 dB absorption band from 11.96 GHz to 22.31 GHz, which covers more than 3 times of the main passband harmonic band. In addition, the FSR has good polarization stability and angle stability within 30˚ of oblique incidences under both TE and TM polarizations, which can be applied to electromagnetic interference shielding field and low-observable platforms.
2023-06-19
PIER
Vol. 177, 85-94
Terahertz Plasmonic Metagrating Design Simultaneously Enabling Broadband Extraordinary Transmission and Field Enhancement
Chi Wang , Shurun Tan , Xiao Lin , Hongsheng Chen and Fei Gao
Metagratings, consisting of subwavelength-aperture arrays (SAAs), provide a powerful platform to manipulate electromagnetic waves. Typical examples include extraordinary optic transmission (EOT) in the far field, and field enhancements (FEs) in the near field. These capabilities promise applications in beam steering and wave-matter interactions, but are not extended to broad bandwidth simultaneously. Here, we transplant the concept of broadband light harvesting devices from optic to terahertz frequency and by exploring one-dimensional arrays of spirally textured metallic cylinders supporting multiple designer localized surface plasmon resonances. Theoretical analysis reveals that the interaction between localized plasmons leads to the broadband THz EOTs in the far field as well as large field enhancements in the near field. The bandwidth of the EOT and the magnitude of field enhancements can be flexibly designed by changing the geometry of the plasmonic-like resonators. This design promises applications in THz broadband beam-steering, absorbers, and sensing, topological devices.
2023-06-19
PIER C
Vol. 133, 251-260
Compact Ultrawideband Antenna Backed by an Artificial Magnetic Conductor
Khalid Moustafa Ibrahim , Eman M. Eldesouki and Ahmed Attiya
In this paper, a new artificial magnetic conductor (AMC) structure is proposed to enhance the performance of an ultra-wideband (UWB) antenna for wireless communication networks. A fractal configuration is used to introduce the UWB performance of the proposed antenna. The antenna is composed of a modified rectangular patch antenna with a tapered section fed by a coplanar waveguide (CPW) with a total size of 24×20×1.5 mm3 . The antenna is backed by an AMC. The proposed AMC unit consists of a square patch surrounded by four slotted square rings. This unit cell exhibits an in-phase reflection from 6.3 GHz to 10 GHz. The obtained bandwidth of the antenna with AMC is 110% from 3.2 GHz to 11 GHz which covers the entire UWB range. The peak gain of 7.2 dB is accomplished with a compact size of 40×40×6.5 mm3 , 0.95×0.95×0.15λo at 7.1 GHz. The proposed UWB antenna-AMC is fabricated and measured for verification.
2023-06-19
PIER Letters
Vol. 111, 27-34
Novel Passive Intermodulation Measurement Platform for Planar Microwave Circuit
Junqiang Yang , Xiong Chen and Qianwen Chen
This paper presents a novel test platform for passive intermodulation measurement on planar microwave circuits using a filter design strategy. A finger planar band-pass filter is proposed and optimized to have an evenly distributed stimulation field on the surface. The layout is optimized with symmetrical coupling lines from two directions, and the feed line is with a tapered transformer. A pair of T-type resonators is adopted to improve the flatness of the field distribution. In the application of this test platform, print circuit boards with different layouts are tested, and the passive intermodulation difference of different layouts can be differentiated. As this platform is with open space, the device under test can be easily changed without suspending the passive intermodulation test system, which can be applied in the production line to speed up the production quality inspection.
2023-06-19
PIER B
Vol. 100, 133-154
Independent Control Over Passbands in Highly Selective and Compact Triple-Band Bandpass Filter Based on Substrate Integrated Waveguide
Soumit Samadder Chaudhury , Seema Awasthi and Rajat Kumar Singh
This paper proposes a method of independent control over each passband in a high performance triple bandpass filter, which is an essential requirement in the field of microwave communication systems. Individual techniques are presented here to control the excited modes that are responsible for the generation of triple passbands based on substrate integrated waveguide loaded with semi-circular mushroom resonators. Initially, a circular substrate integrated waveguide (CSIW) loaded with two cascaded semi-circular mushroom resonators (ScMRs) with distinct modifications and orientations in the schematic is employed to generate three passbands. The fundamental mode and next higher order mode of the entire resonator structure are utilized to generate three passbands, and distinct techniques of mode perturbations and variation in coupling strength are introduced to independently control the excited modes. Subsequently, the methods established to control the excited modes are employed to independently control the center frequencies (CFs) of three passbands. All those methods established to control the CFs of the three passbands are verified with experimental results which show good agreement with the simulated ones.
2023-06-18
PIER Letters
Vol. 111, 17-25
Ultra-Compact Band-Pass Filter at Low Frequency of Operation
Basil J. Paul and Shanta Mridula
An ultra-compact band-pass filter is presented in this paper. The filter is designed to operate in the medical implants communication service (MICS) band ranging from 401 MHz to 406 MHz. The filter is designed on a Rogers RT/duroid substrate with εr = 2.94 and tanδ = 0.0012. The overall size of the proposed filter is only 30.6 mm x 18.5 mm (0.058λg x 0.035λg), making it suitable for compact, portable devices. An equivalent circuit model is also proposed for the analysis of the filter geometry. From the circuit model, it can be concluded that the filter exhibits the characteristics of a dual-composite right left-handed (D-CRLH) transmission line. This is also confirmed from the dispersion characteristics. The salient features of the proposed filter include ultra-compactness at low operating frequency, harmonic suppression of 3.7 times of the passband frequency, fractional bandwidth of 4.45%, and good roll-off rate of 297.6 dB/GHz in the lower stopband and 116.4 dB/GHz in the upper stopband.
2023-06-17
PIER Letters
Vol. 111, 9-16
Research on a New Miniaturization Method of Patch Antenna Based on Metal Strip
Yanwen Hu , Shoudong Li , Tingrong Zhang , Wenying Zhou and Xiufang Wang
A new miniaturized patch antenna based on a metal strip is proposed in this paper. The antenna is designed by adding a middle metal strip layer to the substrate of a traditional rectangular patch antenna. By increasing the length of the metal strip, the working frequency of the patch antenna can be continuously reduced without significantly impacting the radiation pattern. The simulation results indicate that as the metal strip length increases from 5 mm to 25 mm, the working frequency of the patch antenna decreases from 2.39 GHz to 1.84 GHz, and its gain decreases from 6.72 dBi to 5.4 dBi. Two antenna samples with metal strip lengths of 5 mm and 20 mm are fabricated. The experimental results indicate that their working frequencies are 2.64 GHz and 2.43 GHz, respectively. And the radiation patterns of two antennas are consistent with the simulated results. All results confirm the effectiveness of the proposed miniaturization method.
2023-06-16
PIER C
Vol. 133, 233-249
A Control Method of Switched Reluctance Motor Based on Non-Unity TSF and Adaptive Overlapping Angle
Chaozhi Huang , Wensheng Cao , Yanwen Sun , Zhou Chen and Wenjin Zhang
Aiming at the problems of conventional torque sharing function (TSF) control method, such as large torque ripple, high peak current and high copper loss, a non-unity TSF control method with adaptive overlapping angle is proposed. Firstly, on the basis of explaining the conventional TSF control logic, according to the characteristics of inductance, the conduction region is re-divided, and the two-phase exchange region is subdivided into region 1 and region 2, which together with the single-phase conduction region form three regions in the winding conduction region. A non-unity TSF is designed in each region, which conforms to the torque variation trend. Then, an adaptive overlapping angle algorithm is designed, which can automatically adjust the overlapping angle under different speeds and load torques. Finally, taking a three-phase 6/20-pole switched reluctance motor as the control object, the simulation and experimental verification show that the control method can restrain torque ripple and reduce peak current and copper loss at the same time.
2023-06-15
PIER Letters
Vol. 111, 1-7
Detection of Water Content in Honey by Electromagnetics Characterization Measurements
Floriane Sparma , Sarah Sennoun and Pierre Sabouroux
The quality of a honey can be affected by adulteration through the addition of often unauthorized substances such as sugar syrups or water. The water content in honeys is restricted to 20% according to CODEX ALIMENTARIUS. This research proposes a method which will allow to detect the water content in the honey directly in the jar. The method uses electromagnetic probing with several antennas around the jar. This method is based on the knowledge of the dielectric contrast between a pure honey and a honey containing different water contents. To validate this contrast, a campaign of dielectric measurements has been investigated on two different commercial honeys (H1 and H2) with arbitrary and controlled added water. The added water content in the honey has been varied from 0% to 15%. The experimental setup uses a coaxial transmission line with a sample holder. The frequency range extends from 100 MHz to 5000 MHz. The mixtures of honeys with water have been measured at an ambient temperature (25˚C).
2023-06-13
PIER Letters
Vol. 110, 127-135
A Loaded Line 2-Bit Phase Shifter Using RF MEMS DC/Capacitive Switches
Niharika Narang , Pranav K. Shrivastava , Ananjan Basu and Pushpapraj Singh
This letter presents the fabrication and measurement of a novel loaded line phase shifter design providing four different phase shifts using only two RF MEMS switches. The flexibility of choosing DC or capacitive load depending upon the phase shift required in a single RF MEMS switch makes the phase shifter compact and requires less no. of proposed switches. The RF MEMS Switch has been designed to provide isolation better than 10 dB in both DC and capacitive states from 16 to 45 GHz. Due to the designed RF MEMS beam switching between DC and capacitive loading, the proposed phase shifter provides a 2-bit phase shift using only two switches. The measured phase shifter has the maximum insertion loss of 0.8 dB with a bandwidth of 8 GHz from 16 to 24 GHz. The return loss is better than 10 dB for all four states. The maximum Root-Mean-Square (RMS) insertion loss error is 0.28 dB, and the phase shift error is 0.98º. The proposed phase shifter is fabricated using the surface micromachining on the sapphire substrate and occupies an area of 3.931 mm2.
2023-06-10
PIER C
Vol. 133, 219-231
Enhancement of the Peak Power Handling Capability in Microstrip Filters by Employing Smooth-Profiled Conductor Strips
Jamil Ahmad , Jabir Hussain , Ivan Arregui , Petronilo Martin-Iglesias , Israel Arnedo , Miguel Laso and Txema Lopetegi
This paper presents a design methodology that significantly increases the peak power handling capability (PPHC) of microstrip filters. The PPHC is limited in microstrip technology by the corona effect: a physical phenomenon caused by the ionization of the air under the presence of strong electric fields around the planar circuit. Microstrip filters with a low electric field strength in the air increases the corona threshold level, resulting in high PPHC. Conventional stepped impedance (SI) filters, which consist of cascaded step-shaped elements, exhibit sharp discontinuities. These geometric edges amplify the electric field strength in the air, consequently reducing the corona threshold. Our research group has recently reported a new synthesis technique that introduces a smooth-profile (SP) conductor strip. This SP strip eliminates any sharp discontinuities and significantly reduces the strength of the electric field. This paper focuses on the examination of the high power performance of 7th-order SP and SI low-pass filters. The cut-off frequency (fc) for both types of filters is set at 447.45 MHz, while the frequency for maximum stop-band rejection (fo) is 1 GHz. The findings indicate that the SP filter shows a notable enhancement in peak power handling capability (PPHC), with gains of 2.48 dB and 4.80 dB observed at critical pressure and ambient pressure, respectively.
2023-06-09
PIER M
Vol. 117, 105-118
Design of High-Performance Parallel-Connected Filters Using Chained Filtering Functions
Francis Emmanuel Chinda , Socheatra Soeung , Muhammad Sani Yahya , Sovuthy Cheab and Huzein Fahmi Hawari
This paper presents a design of high-performance parallel-connected filters using the Chained filtering function. The filtering functions enable the placement of multiple return loss zeros at the same frequency, resulting in reduced sensitivity to fabrication tolerance and design complexity compared to traditional Chebyshev counterparts. To demonstrate the feasibility of this technique, a new filtering function (FN) based on Chained filtering function is derived, and prototypes of fourth and sixth-degree Chained function filters in a parallel-connected topology are designed and fabricated. The overall size of the filters is 2.5 cm x 4 cm (fourth degree) and 2.5 cm x 5 cm (sixth degree). The measured insertion and return losses are 2.833 dB and 16.150 dB (fourth degree), and 2.674 dB and 18.074 dB (sixth degree). The achievable selectivity of the filters is 78.17 (fourth degree) and 89.68 (sixth degree). This design technique can serve as a useful tool for filter design engineers in terms of implementation.
2023-06-07
PIER C
Vol. 133, 209-218
Ground Radiation Based Triple-Band MIMO Antenna with Wideband Characteristics for Wi-Fi and Wi-Fi 6E Applications
Muhammad Zeeshan Zahid , Ayesha Habib and Longyue Qu
The paper presents a ground radiation antenna (GradiAnt) based triple-band MIMO antenna with wideband characteristics for Wi-Fi 6E applications. The GradiAnt is a novel antenna element with a series combination of inductor and capacitor in the feed loop, and dual-band characteristics have been achieved by controlling the impedance level of the antenna. By introducing a parasitic resonator within the feed loop of GradiAnt, triple-band characteristic is achieved and significant bandwidth enhancement is realized, fully covering the Wi-Fi and Wi-Fi 6E operation bands. The resonator consists of a parasitic strip connected with the ground plane through an inductor. Two identical GradiAnts are symmetrically installed at the corners of the shorter edge of the 55 × 40 mm2 sized ground plane for MIMO scenarios. A loop-type isolator is installed between the antenna elements to decouple the lower Wi-Fi band where the higher bands are self-isolated. The measured bands with reference to -6 dB are 2.36-2.63 GHz and 4.768 GHz. The isolation in the lower and higher bands is greater than 22 dB and 17.5 dB, respectively. The ECC is less than 0.03 in the lower band and 0.16 in the higher bands.
2023-06-06
PIER
Vol. 177, 75-84
Research on the Radiation Properties of Tapered Slot Magnetoelectric Antenna
Tianhao Han , Biao Dong , Yong Zhang , Yu Wang , Zhongming Yan , Hongcheng Zhou , Jinhua Feng and Yulong Liu
The advent of acoustically mediated magnetoelectric (ME) antennas offers a new idea for miniaturizing antennas. The ME antenna operates at mechanical resonant frequencies, so its dimension can be reduced by three orders of magnitude compared to an electric antenna counterpart. However, the poor directional radiation property of the reported magnetoelectric antennas, which is similar to an ideal magnetic dipole, limits the use of the ME antennas. In this paper, we propose a tapered slot magnetoelectric (TSME) antenna which is composited of PZT-5H and Metglas with dimensions of 50 mm × 30 mm × 0.596 mm and an operating frequency of around 30 kHz. Inspired by the structure of the slot-coupled antenna, the structure of the magnetostrictive layer of the ME antenna has been modified, and the front-back radiation difference in the near field has been improved by 7.9 dB compared to a normal ME antenna. The different operating principles between the TSME antenna and normal ME antennas have been analyzed and verified in the paper. In addition, we have successfully implemented amplitude modulation (AM) signals transmission using TSME antennas. This work provides new ideas for improving the radiation performance of ME antennas and lays the foundation for their practical application.
2023-06-06
PIER C
Vol. 133, 195-208
Miniaturized Pentagon-Shaped Planar Monopole Antenna for Ultra-Wideband Applications
Sapna Arora , Sharad Sharma , Rohit Anand and Garima Shrivastva
A pentagon shaped ultra-wideband (UWB) antenna with a high selective notch at wireless local area network (WLAN) band is presented. An inverted L-shaped stub is incorporated with a pentagon-shaped metallic patch fabricated on an FR4 substrate. Also, a partial ground plane with a slot has been used to achieve UWB operation. Two structures are embedded into a patch to realize a rectangular notch. An electromagnetic band gap (EBG) structure is placed on the opposite side of the patch, and a rectangular complementary split ring resonator(RCSRR) is embedded in the patch. With the coupling of two structures, their notch bands are adjusted to achieve a rectangular notch. The bandwidth, upper and lower frequencies of the notch can be adjusted by varying dimensions of RCSRR and EBG. The measured and simulated results show S11 ≤ -10 dB for 3.1 GHz-12.5 GHz with a notch at the WLAN band from 5 GHz to 5.91 GHz. Also, the proposed design has a stable radiation pattern and gain with a peak value of 3.5 dB at 9.5 GHz and -6 dB at 5.1 GHz. The miniaturized size of the proposed design (21.5 mm × 27.5 mm × 1.6 mm) with ultra wide bandwidth makes it suitable for wireless applications.
2023-06-06
PIER M
Vol. 117, 95-104
Structural Design and Optimization of Optical Nano-Antenna Based on Bridge Structure
Guo Liu , Chi Zhao , Jingfei Jiang , Zhaozhao Gao and Jie Gu
Optical nano-antenna offers a new scheme for solar energy collection by breaking through the band-gap limitation of semiconductor materials. However, complex structure, low efficiency, and narrow bandwidth remain major issues. To address these problems, we propose a novel helical optical nano-antenna based on the bridge structure. The antenna structure consists of two coplanar Archimedes spiral arms and a base layer. We analyze the influence mechanism of structural factors on its radiation efficiency and polarization characteristics. Our results show that the antenna structure achieves a total radiation efficiency of 83.13% in the wide wavelength range of 400 to 1600 nm, which is significantly higher than that of the previously proposed dipole nano-antenna. For different linearly polarized incident waves, the antenna structure obtains the same order electric field at the spiral gap, which indicates that the antenna structure can fully consider the polarization characteristics of sunlight. It fundamentally solves the problem that the linearly polarized antenna can only receive half of the solar energy, improving the absorption efficiency.
2023-06-04
PIER
Vol. 177, 53-73
The Effects of Obscuration in Passive 3-D Millimeter-Wave Imaging for Human Security Screening
Xuelei Sun , Neil Anthony Salmon , Xiaodong Zhuge and Jungang Miao
The possibility of near-field passive 3-D imaging using the aperture synthesis technique is theoretically proven and highlights the opportunity for imaging the entire human body by an antenna receiving array that surrounds the body. In these scenarios there will be partial obscuration of some regions of the body, by other parts of the body. This results in some receivers in the array being able to measure emission from certain parts of the body, while others are obscured from a measurement. A model is presented which enables the e ects of obscuration to be assessed for planar-like, cylindrical-like, and concave-like regions of the human body. The e ect the obscuration has on the spatial resolution of the imager is evaluated by examining the 3-D point spread function, as determined by a near-field aperture synthesis imaging algorithm. It is shown that over many areas of the human body, the Abbe microscope resolution of λ/2 (5 mm@30 GHz) in a direction transverse to the human body surface is achievable, an attractive proposition for security screening. However, the spatial resolution in a direction normal to the human body surface is shown to be close to λ(10 mm@30 GHz). In regions of greater obscuration, such as in the armpits, the resolution may fall to λ(10 mm@ 30 GHz) and 5λ (50 mm@30 GHz) in the directions transverse and normal to the human body surface respectively. It is also shown by simulation using a human body solid model and the 3-D aperture synthesis imaging algorithm how the image quality changes with the number of receiving antennas.
2023-06-04
PIER C
Vol. 133, 181-194
Predictive Current Control of Permanent Magnet Synchronous Motor Based on Parameter Identification
Chengmin Wang and Aiyuan Wang
Aiming at the unsatisfactory accuracy and speed of traditional parameter identification methods for permanent magnet synchronous motors (PMSM), a parameter identification method based on an improved hunter prey optimization (HPO) algorithm (Tent chaotic initialization and firefly algorithm HPO (TF-HPO)) was proposed. Using the Tent chaotic map, the initial individuals are evenly distributed to enrich their diversity, and the population position is updated using the firefly perturbation algorithm. Simulation and practical experiments show that compared with unmodified algorithm, the improved algorithm has faster convergence speed and higher recognition accuracy, and can effectively identify the parameters of the motor. On this basis, deadbeat predictive current control is implemented, effectively eliminating current static errors and improving the accuracy and stability of the current control system, and can effectively suppress motor torque ripple and current harmonics caused by parameter deviations.