Vol. 117
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-06-06
Structural Design and Optimization of Optical Nano-Antenna Based on Bridge Structure
By
Progress In Electromagnetics Research M, Vol. 117, 95-104, 2023
Abstract
Optical nano-antenna offers a new scheme for solar energy collection by breaking through the band-gap limitation of semiconductor materials. However, complex structure, low efficiency, and narrow bandwidth remain major issues. To address these problems, we propose a novel helical optical nano-antenna based on the bridge structure. The antenna structure consists of two coplanar Archimedes spiral arms and a base layer. We analyze the influence mechanism of structural factors on its radiation efficiency and polarization characteristics. Our results show that the antenna structure achieves a total radiation efficiency of 83.13% in the wide wavelength range of 400 to 1600 nm, which is significantly higher than that of the previously proposed dipole nano-antenna. For different linearly polarized incident waves, the antenna structure obtains the same order electric field at the spiral gap, which indicates that the antenna structure can fully consider the polarization characteristics of sunlight. It fundamentally solves the problem that the linearly polarized antenna can only receive half of the solar energy, improving the absorption efficiency.
Citation
Guo Liu, Chi Zhao, Jingfei Jiang, Zhaozhao Gao, and Jie Gu, "Structural Design and Optimization of Optical Nano-Antenna Based on Bridge Structure," Progress In Electromagnetics Research M, Vol. 117, 95-104, 2023.
doi:10.2528/PIERM23032805
References

1. Hong, L., X. Wang, H. Zheng, L. He, H. Wang, H. Yu, et al. "High efficiency silicon nanohole/organic heterojunction hybrid solar cell," Appl. Phys. Lett., Vol. 104, 053104, 2014.
doi:10.1063/1.4863965

2. Shockley, W. and H. J. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells," Journal of Applied Physics, Vol. 32, No. 3, 510-519, 1961.
doi:10.1063/1.1736034

3. Kotter, D. K., S. D. Novack, W. D. Slafer, et al. "Theory and manufacturing processes of solar nano-antenna electromagnetic collectors," Journal of Solar Energy Engineering, Vol. 132, No. 1, 11-14, 2010.
doi:10.1115/1.4000577

4. Goswami, D. Y., S. Vijayaraghavan, S. Lu, et al. "New and emerging developments in solar energy," Solar Energy, Vol. 76, No. 1, 33-43, 2004.
doi:10.1016/S0038-092X(03)00103-8

5. Kotter, D. K., S. D. Novack, W. D. Slafer, et al. "Solar nantenna electromagnetic collectors," ASME 2008 2nd International Conference on Energy Sustainability Collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences, 409-415, American.

6. Bailey, R. L., "A proposed new concept for a solar-energy converter," Journal of Engineering for Gas Turbines and Power, Vol. 94, No. 2, 73-77, 1972.
doi:10.1115/1.3445660

7. Marks, A. M., "Device for conversion of light power to electric power: US,", US4445050[P], 1984.

8. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., 147-150, John Wiley & Sons Inc., 2005.

9. Vandenbosch, G. A. E. and Z. Ma, "Upper bounds for the solar energy harvesting efficiency of nano-antennas," Nano Energy, Vol. 1, No. 3, 494-502, 2012.
doi:10.1016/j.nanoen.2012.03.002

10. Hussein, M., N. F. F. Areed, M. F. O. Hameed, et al. "Design of flower-shaped dipole nano-antenna for energy harvesting," IET Optoelectronics, Vol. 8, No. 4, 167-173, 2014.
doi:10.1049/iet-opt.2013.0108

11. Sarehraz, M., K. Buckle, T. Weller, et al. "Rectenna developments for solar energy collection," Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 78-81, 2005.
doi:10.1109/PVSC.2005.1488073

12. Ma, Z. and G. A. E. Vandenbosch, "Optimal solar energy harvesting efficiency of nano-rectenna systems," Solar Energy, Vol. 88, No. 1, 163-174, 2013.
doi:10.1016/j.solener.2012.11.023

13. Saynak, U., "Novel rectangular spiral antennas,", 4-6, Izmir Institute of Technology, 2007.

14. Zhu, Z., S. Joshi, B. Pelz, et al. "Overview of optical rectennas for solar energy harvesting," SPIE Solar Energy Technology. International Society for Optics and Photonics, 88240O-88240O-11, 2013.

15. Gallo, M., L. Mescia, O. Losito, et al. "Design of optical antenna for solar energy collection," Energy, Vol. 39, No. 1, 27-32, 2012.
doi:10.1016/j.energy.2011.02.026

16. Bozzetti, M., G. De Candia, M. Gallo, et al. "Analysis and design of a solar rectenna," IEEE International Symposium on Industrial Electronics, 2001-2004, 2010.

17. Sabaawi, A. M. A., C. C. Tsimenidis, and B. S. Sharif, "Infra-red spiral nano-antennas," Antennas and Propagation Conference, 1-4, 2012.

18. Jia, H., H. Liu, and Y. Zhong, "Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas," Scientific Reports, Vol. 5, 2015.
doi:10.9734/JSRR/2015/14076

19. Novotny, L. and B. Hecht, Principles of Nano-optics, Vol. 247, Cambridge University Press, 2012.
doi:10.1017/CBO9780511794193

20. Lu, G., T. Zhang, W. Li, et al. "Single-molecule spontaneous emission in the vicinity of an individual gold nanorod," The Journal of Physical Chemistry C, Vol. 115, No. 32, 15822-15828, 2011.
doi:10.1021/jp203317d

21. Mohammadi, A., F. Kaminski, V. Sandoghdar, et al. "Fluorescence enhancement with the optical (bi-)conical antenna," The Journal of Physical Chemistry C, Vol. 114, No. 16, 7372-7377, 2010.
doi:10.1021/jp9094084

22. Kaminski, F., V. Sandoghdar, and M. Agio, "Finite-difference time-domain modeling of decay rates in the near field of metal nanostructures," Journal of Computational and Theoretical Nanoscience, Vol. 4, No. 3, 635-643, 2007.
doi:10.1166/jctn.2007.028

23. Wang, I. and Y. Du, "Broadband optical antenna with a disk structure," SPIE/OSA/IEEE Asia Communications and Photonics. International Society for Optics and Photonics, Vol. 8307, No. 1, 1-7, 2011.

24. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Physical Review B, Vol. 6, No. 12, 4370, 1972.
doi:10.1103/PhysRevB.6.4370

25. Gao, H., K. Li, F. Kong, H. Xie, and J. Zhao, "Optimizing nano-optical antenna for the enhancement of spontaneous emission," Progress In Electromagnetics Research, Vol. 104, 313-331, 2010.
doi:10.2528/PIER09111607

26. Novotny, L., "Effective wavelength scaling for optical antennas," Physical Review Letters, Vol. 98, No. 26, 1-4, 2007.
doi:10.1103/PhysRevLett.98.266802