1. Luukanen, A., R. Appleby, M. Kemp, and N. A. Salmon, "Millimeter-wave and terahertz imaging in security applications," Terahertz Spectroscopy and Imaging, Springer Berlin Heidelberg, 2013. Google Scholar
2. Nanzer, J. A., "Microwave and Millimeter-wave Remote Sensing for Security Applications," Artech, 2012.
3. Ahmed, S. S., "Microwave imaging in security --- Two decades of innovation," IEEE Journal of Microwaves, Vol. 1, No. 1, 191-201, 2021.
doi:10.1109/JMW.2020.3035790 Google Scholar
4. Martin, C. A. and V. G. Kolinko, "Concealed weapons detection with an improved passive millimeter-wave imager," Proc. SPIE --- The International Society for Optical Engineering, Vol. 5410, 252-259, 2004. Google Scholar
5. Salmon, N. A., R. Macpherson, A. Harvey, P. Hall, S. Hayward, P. Wilkinson, and C. Taylor, "First video rate imagery from a 32-channel 22-GHz aperture synthesis passive millimetre wave imager," Proc. SPIE --- Millimetre Wave and Terahertz Sensors and Technology IV, Vol. 8188, 31-42, 2011. Google Scholar
6. Hu, T., Z. Xiao, H. Li, R. Lv, and X. Lu, "Experimental methods of indoor millimeter-wave radiometric imaging for personnel concealed contraband detection," Proc. SPIE --- The International Society for Optical Engineering, Vol. 9275, 201-209, 2014. Google Scholar
7. Zheng, C., X. Yao, A. Hu, and J. Miao, "A passive millimeter-wave imager used for concealed weapon detection," Progress In Electromagnetics Research B, Vol. 46, 379-397, 2012. Google Scholar
8. Heinz, E., T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schaffel, "Passive 350 GHz video imaging systems for security applications," J. Infrared, Millimeter, Terahertz Waves, Vol. 36, No. 10, 879-895, 2015.
doi:10.1007/s10762-015-0170-8 Google Scholar
9. Salmon, N. A., "Indoor full-body security screening: Radiometric microwave imaging phenomenology and polarimetric scene simulation," IEEE Access, Vol. 8, 144621-144637, 2020.
doi:10.1109/ACCESS.2020.3013967 Google Scholar
10. Coward, P. R. and R. Appleby, "Development of an illumination chamber for indoor millimeter-wave imaging," Proc. SPIE --- Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, Vol. 5077, 54-61, 2003. Google Scholar
11. Doyle, R., B. Lyons, A. Lettington, T. McEnroe, J. Walshe, J. McNaboe, and P. Curtin, "Illumination strategies to achieve effective indoor millimeter wave imaging for personnel screening applications," Proc. SPIE --- Passive Millimeter-Wave Imaging Technology VIII, Vol. 5789, 101-108, 2005.
doi:10.1117/12.603456 Google Scholar
12. Thompson, A. R., J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy, Springer, 2017.
doi:10.1007/978-3-319-44431-4
13. Zheng, C., X. Yao, A. Hu, and J. Miao, "Initial results of a passive millimeter-wave imager used for concealed weapon detection BHU-2D-U," Progress In Electromagnetics Research C, Vol. 43, 151-163, 2013.
doi:10.2528/PIERC13062801 Google Scholar
14. Zhao, Y., A. Hu, W. Si, X. Guo, and J. Miao, "Calibration of visibility samples for real-time passive millimeter wave imaging," IEEE Access, Vol. 9, 106441-106450, 2021.
doi:10.1109/ACCESS.2021.3100102 Google Scholar
15. Salmon, N. A. and N. Bowring, "Near-field and three-dimensional aperture synthesis imaging," Proc. SPIE --- Millimetre Wave and Terahertz Sensors and Technology VI, Vol. 8900, 109-117, 2013. Google Scholar
16. Salmon, N. A. and N. Bowring, "Three-dimensional radiometric aperture synthesis microscopy for security screening," Proc. SPIE --- Millimetre Wave and Terahertz Sensors and Technology VII, Vol. 9252, 12-20, 2014. Google Scholar
17. Salmon, N. A. and N. Bowring, "Simulations of three-dimensional radiometric imaging of extended sources in a security screening portal," Proc. SPIE --- Millimetre Wave and Terahertz Sensors and Technology VIII, Vol. 9651, 965106, 2015.
doi:10.1117/12.2197409 Google Scholar
18. Salmon, N. A., "3-D radiometric aperture synthesis imaging," IEEE Trans. Microwave Theory Tech., Vol. 63, No. 11, 3579-3587, 2015.
doi:10.1109/TMTT.2015.2481413 Google Scholar
19. Goodman, J. W., Statistical Optics, Wiley, 2015.
20. Salmon, N. A., "Spatial resolutions and field-of-views in millimetre wave aperture synthesis security screening imagers," Proc. SPIE --- Millimetre Wave and Terahertz Sensors and Technology XI, Vol. 10800, 1080004, 2018. Google Scholar
21. Lipson, A., S. G. Lipson, and H. Lipson, Optical Physics, Cambridge University Press, 2010.
doi:10.1017/CBO9780511763120
22. Zhang, Z., Microwave Radiometry Technology and Application, Beijing Publishing House of Electronics Industry, 1995.
23. Camps Carmona, A. J., Application of Interferometric Radiometry to Earth Observation, Universitat Politecnica de Catalunya, 1996.
24. Corbella, I., N. Duffo, M. Vall-Llossera, A. Camps, and F. Torres, "The visibility function in interferometric aperture synthesis radiometry," IEEE Trans. Geosci. Electron., Vol. 42, No. 8, 1677-1682, 2004.
doi:10.1109/TGRS.2004.830641 Google Scholar
25. Carter, W. H., "Three different kinds of fraunhofer approximations. II. Propagation of the cross-spectral density function," J. Mod. Opt., Vol. 37, No. 1, 109-120, 1990.
doi:10.1080/09500349014550101 Google Scholar
26. Carter, W. H., "On refocusing a radio telescope to image sources in the near field of the antenna array," IEEE Trans. Antennas Propag., Vol. 37, No. 3, 314-319, 1989.
doi:10.1109/8.18727 Google Scholar
27. Peichl, M., H. Suess, M. Suess, and S. Kern, "Microwave imaging of the brightness temperature distribution of extended areas in the near and far field using two-dimensional aperture synthesis with high spatial resolution," Radio Sci., Vol. 33, No. 3, 781-801, 1998.
doi:10.1029/97RS02398 Google Scholar
28. Gonzalez, A. "Measurement of areas on a sphere using Fibonacci and latitude-longitude lattices," Math. Geosci., Vol. 42, No. 1, 49-64, 2010.
doi:10.1007/s11004-009-9257-x Google Scholar
29. MakeHuman: Open Source tool for making 3D characters, http://www.makehumancommunity.org.
30. Salmon, N. A., "Outdoor passive millimeter-wave imaging: Phenomenology and scene simulation," IEEE Trans. Antennas Propag., Vol. 66, No. 2, 897-908, 2017.
doi:10.1109/TAP.2017.2781742 Google Scholar
31. Rubinstein, R. Y. and D. P. Kroese, Simulation and the Monte Carlo Method, Wiley, 2016.
doi:10.1002/9781118631980
32. Zhao, Y., W. Si, B. Han, Z. Yang, A. Hu, and J. Miao, IEEE Access, Vol. 10, 32879-32888, 2022.
33. Chen, X., A. Hu, J. Gong, and J. Miao, "Ka band low channel mutual coupling integrated packaged phased array receiver front-end for passive millimeter-wave imaging," Micromachines, Vol. 14, No. 4, 2023. Google Scholar
34. Salmon, N. A., "Polarimetric scene simulation in millimeter-wave radiometric imaging," Proc. SPIE --- Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, Vol. 5410, 260-269, 2004. Google Scholar
35. Kopilovich, L. and L. Sodin, "Multielement system design in astronomy and radio science," Springer Science + Business Media B.V., 2001. Google Scholar
36. Ruf, S. C., "Numerical annealing of low-redundancy linear arrays," IEEE Trans. Antennas Propag., Vol. 41, No. 1, 85-90, 1993.
doi:10.1109/8.210119 Google Scholar