Vol. 177
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-06-04
The Effects of Obscuration in Passive 3-d Millimeter-Wave Imaging for Human Security Screening
By
Progress In Electromagnetics Research, Vol. 177, 53-73, 2023
Abstract
The possibility of near-field passive 3-D imaging using the aperture synthesis technique is theoretically proven and highlights the opportunity for imaging the entire human body by an antenna receiving array that surrounds the body. In these scenarios there will be partial obscuration of some regions of the body, by other parts of the body. This results in some receivers in the array being able to measure emission from certain parts of the body, while others are obscured from a measurement. A model is presented which enables the e ects of obscuration to be assessed for planar-like, cylindrical-like, and concave-like regions of the human body. The e ect the obscuration has on the spatial resolution of the imager is evaluated by examining the 3-D point spread function, as determined by a near-field aperture synthesis imaging algorithm. It is shown that over many areas of the human body, the Abbe microscope resolution of λ/2 (5 mm@30 GHz) in a direction transverse to the human body surface is achievable, an attractive proposition for security screening. However, the spatial resolution in a direction normal to the human body surface is shown to be close to λ(10 mm@30 GHz). In regions of greater obscuration, such as in the armpits, the resolution may fall to λ(10 mm@ 30 GHz) and 5λ (50 mm@30 GHz) in the directions transverse and normal to the human body surface respectively. It is also shown by simulation using a human body solid model and the 3-D aperture synthesis imaging algorithm how the image quality changes with the number of receiving antennas.
Citation
Xuelei Sun, Neil Anthony Salmon, Xiaodong Zhuge, and Jungang Miao, "The Effects of Obscuration in Passive 3-d Millimeter-Wave Imaging for Human Security Screening," Progress In Electromagnetics Research, Vol. 177, 53-73, 2023.
doi:10.2528/PIER23011302
References

1. Luukanen, A., R. Appleby, M. Kemp, and N. A. Salmon, "Millimeter-wave and terahertz imaging in security applications," Terahertz Spectroscopy and Imaging, Springer Berlin Heidelberg, 2013.

2. Nanzer, J. A., "Microwave and Millimeter-wave Remote Sensing for Security Applications," Artech, 2012.

3. Ahmed, S. S., "Microwave imaging in security --- Two decades of innovation," IEEE Journal of Microwaves, Vol. 1, No. 1, 191-201, 2021.
doi:10.1109/JMW.2020.3035790

4. Martin, C. A. and V. G. Kolinko, "Concealed weapons detection with an improved passive millimeter-wave imager," Proc. SPIE --- The International Society for Optical Engineering, Vol. 5410, 252-259, 2004.

5. Salmon, N. A., R. Macpherson, A. Harvey, P. Hall, S. Hayward, P. Wilkinson, and C. Taylor, "First video rate imagery from a 32-channel 22-GHz aperture synthesis passive millimetre wave imager," Proc. SPIE --- Millimetre Wave and Terahertz Sensors and Technology IV, Vol. 8188, 31-42, 2011.

6. Hu, T., Z. Xiao, H. Li, R. Lv, and X. Lu, "Experimental methods of indoor millimeter-wave radiometric imaging for personnel concealed contraband detection," Proc. SPIE --- The International Society for Optical Engineering, Vol. 9275, 201-209, 2014.

7. Zheng, C., X. Yao, A. Hu, and J. Miao, "A passive millimeter-wave imager used for concealed weapon detection," Progress In Electromagnetics Research B, Vol. 46, 379-397, 2012.

8. Heinz, E., T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schaffel, "Passive 350 GHz video imaging systems for security applications," J. Infrared, Millimeter, Terahertz Waves, Vol. 36, No. 10, 879-895, 2015.
doi:10.1007/s10762-015-0170-8

9. Salmon, N. A., "Indoor full-body security screening: Radiometric microwave imaging phenomenology and polarimetric scene simulation," IEEE Access, Vol. 8, 144621-144637, 2020.
doi:10.1109/ACCESS.2020.3013967

10. Coward, P. R. and R. Appleby, "Development of an illumination chamber for indoor millimeter-wave imaging," Proc. SPIE --- Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, Vol. 5077, 54-61, 2003.

11. Doyle, R., B. Lyons, A. Lettington, T. McEnroe, J. Walshe, J. McNaboe, and P. Curtin, "Illumination strategies to achieve effective indoor millimeter wave imaging for personnel screening applications," Proc. SPIE --- Passive Millimeter-Wave Imaging Technology VIII, Vol. 5789, 101-108, 2005.
doi:10.1117/12.603456

12. Thompson, A. R., J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy, Springer, Cham, 2017.
doi:10.1007/978-3-319-44431-4

13. Zheng, C., X. Yao, A. Hu, and J. Miao, "Initial results of a passive millimeter-wave imager used for concealed weapon detection BHU-2D-U," Progress In Electromagnetics Research C, Vol. 43, 151-163, 2013.
doi:10.2528/PIERC13062801

14. Zhao, Y., A. Hu, W. Si, X. Guo, and J. Miao, "Calibration of visibility samples for real-time passive millimeter wave imaging," IEEE Access, Vol. 9, 106441-106450, 2021.
doi:10.1109/ACCESS.2021.3100102

15. Salmon, N. A. and N. Bowring, "Near-field and three-dimensional aperture synthesis imaging," Proc. SPIE --- Millimetre Wave and Terahertz Sensors and Technology VI, Vol. 8900, 109-117, 2013.

16. Salmon, N. A. and N. Bowring, "Three-dimensional radiometric aperture synthesis microscopy for security screening," Proc. SPIE --- Millimetre Wave and Terahertz Sensors and Technology VII, Vol. 9252, 12-20, 2014.

17. Salmon, N. A. and N. Bowring, "Simulations of three-dimensional radiometric imaging of extended sources in a security screening portal," Proc. SPIE --- Millimetre Wave and Terahertz Sensors and Technology VIII, Vol. 9651, 965106, 2015.
doi:10.1117/12.2197409

18. Salmon, N. A., "3-D radiometric aperture synthesis imaging," IEEE Trans. Microwave Theory Tech., Vol. 63, No. 11, 3579-3587, 2015.
doi:10.1109/TMTT.2015.2481413

19. Goodman, J. W., Statistical Optics, Wiley, America, 2015.

20. Salmon, N. A., "Spatial resolutions and field-of-views in millimetre wave aperture synthesis security screening imagers," Proc. SPIE --- Millimetre Wave and Terahertz Sensors and Technology XI, Vol. 10800, 1080004, 2018.

21. Lipson, A., S. G. Lipson, and H. Lipson, Optical Physics, Cambridge University Press, New York, 2010.
doi:10.1017/CBO9780511763120

22. Zhang, Z., Microwave Radiometry Technology and Application, Beijing Publishing House of Electronics Industry, Beijing, 1995.

23. Camps Carmona, A. J., Application of Interferometric Radiometry to Earth Observation, Universitat Politecnica de Catalunya, 1996.

24. Corbella, I., N. Duffo, M. Vall-Llossera, A. Camps, and F. Torres, "The visibility function in interferometric aperture synthesis radiometry," IEEE Trans. Geosci. Electron., Vol. 42, No. 8, 1677-1682, 2004.
doi:10.1109/TGRS.2004.830641

25. Carter, W. H., "Three different kinds of fraunhofer approximations. II. Propagation of the cross-spectral density function," J. Mod. Opt., Vol. 37, No. 1, 109-120, 1990.
doi:10.1080/09500349014550101

26. Carter, W. H., "On refocusing a radio telescope to image sources in the near field of the antenna array," IEEE Trans. Antennas Propag., Vol. 37, No. 3, 314-319, 1989.
doi:10.1109/8.18727

27. Peichl, M., H. Suess, M. Suess, and S. Kern, "Microwave imaging of the brightness temperature distribution of extended areas in the near and far field using two-dimensional aperture synthesis with high spatial resolution," Radio Sci., Vol. 33, No. 3, 781-801, 1998.
doi:10.1029/97RS02398

28. Gonzalez, A. "Measurement of areas on a sphere using Fibonacci and latitude-longitude lattices," Math. Geosci., Vol. 42, No. 1, 49-64, 2010.
doi:10.1007/s11004-009-9257-x

29. MakeHuman: Open Source tool for making 3D characters, http://www.makehumancommunity.org.

30. Salmon, N. A., "Outdoor passive millimeter-wave imaging: Phenomenology and scene simulation," IEEE Trans. Antennas Propag., Vol. 66, No. 2, 897-908, 2017.
doi:10.1109/TAP.2017.2781742

31. Rubinstein, R. Y. and D. P. Kroese, Simulation and the Monte Carlo Method, Wiley, New York, 2016.
doi:10.1002/9781118631980

32. Zhao, Y., W. Si, B. Han, Z. Yang, A. Hu, and J. Miao, IEEE Access, Vol. 10, 32879-32888, 2022.

33. Chen, X., A. Hu, J. Gong, and J. Miao, "Ka band low channel mutual coupling integrated packaged phased array receiver front-end for passive millimeter-wave imaging," Micromachines, Vol. 14, No. 4, 2023.

34. Salmon, N. A., "Polarimetric scene simulation in millimeter-wave radiometric imaging," Proc. SPIE --- Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, Vol. 5410, 260-269, 2004.

35. Kopilovich, L. and L. Sodin, "Multielement system design in astronomy and radio science," Springer Science + Business Media B.V., 2001.

36. Ruf, S. C., "Numerical annealing of low-redundancy linear arrays," IEEE Trans. Antennas Propag., Vol. 41, No. 1, 85-90, 1993.
doi:10.1109/8.210119