Vol. 133
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-06-07
Ground Radiation Based Triple-Band MIMO Antenna with Wideband Characteristics for Wi-Fi and Wi-Fi 6E Applications
By
Progress In Electromagnetics Research C, Vol. 133, 209-218, 2023
Abstract
The paper presents a ground radiation antenna (GradiAnt) based triple-band MIMO antenna with wideband characteristics for Wi-Fi 6E applications. The GradiAnt is a novel antenna element with a series combination of inductor and capacitor in the feed loop, and dual-band characteristics have been achieved by controlling the impedance level of the antenna. By introducing a parasitic resonator within the feed loop of GradiAnt, triple-band characteristic is achieved and significant bandwidth enhancement is realized, fully covering the Wi-Fi and Wi-Fi 6E operation bands. The resonator consists of a parasitic strip connected with the ground plane through an inductor. Two identical GradiAnts are symmetrically installed at the corners of the shorter edge of the 55 × 40 mm2 sized ground plane for MIMO scenarios. A loop-type isolator is installed between the antenna elements to decouple the lower Wi-Fi band where the higher bands are self-isolated. The measured bands with reference to -6 dB are 2.36-2.63 GHz and 4.768 GHz. The isolation in the lower and higher bands is greater than 22 dB and 17.5 dB, respectively. The ECC is less than 0.03 in the lower band and 0.16 in the higher bands.
Citation
Muhammad Zeeshan Zahid, Ayesha Habib, and Longyue Qu, "Ground Radiation Based Triple-Band MIMO Antenna with Wideband Characteristics for Wi-Fi and Wi-Fi 6E Applications," Progress In Electromagnetics Research C, Vol. 133, 209-218, 2023.
doi:10.2528/PIERC23041702
References

1. Sim, C., H. Liu, and C. Huang, "Wideband MIMO antenna array design for future mobile devices operating in the 5G NR frequency bands n77/n78/n79 and LTE band 46," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 74-78, 2020.
doi:10.1109/LAWP.2019.2953334

2. Foschini, G. J. and M. J. Gans, "On limits of wireless communication in a fading environment when using multiple antennas," Wireless Personal Commun., Vol. 6, 311-335, 1998.
doi:10.1023/A:1008889222784

3. https://www.lairdconnect.com/rf-antennas/wifi-antennas/internal-ntennas/flexpifa-flexpifa-6e-flexible-adhesive-backed-pifa-internal-antennas.

4. Guo, J., H. Bai, A. Feng, Y. Liu, Y. Huang, and X. Zhang, "A compact dual-band slot antenna with horizontally polarized omnidirectional radiation," IEEE Trans on Antennas and Propag., Vol. 20, No. 7, 1234-1238, 2021.
doi:10.1109/LAWP.2021.3076169

5. Brocker, D. E., Z. H. Jiang, M. D. Gregory, and D. H. Werner, "Miniaturized dual-band folded patch antenna with independent band control utilizing an interdigitated slot loading," IEEE Trans on Antennas and Propag., Vol. 65, No. 1, 380-384, 2017.
doi:10.1109/TAP.2016.2627025

6. Cui, Y., X. Wang, G. Shen, and R. Li, "A triband SIW cavity-backed differentially fed dual-polarized slot antenna for WiFi/5G applications," IEEE Trans. on Antennas and Propag., Vol. 68, No. 12, 8209-8214, 2020.
doi:10.1109/TAP.2020.3010935

7. Wong, K.-L., H.-Y. Jiang, and W.-Y. Li, "Decoupling hybrid metal walls and half-wavelength diagonal open-slots based four-port square patch antenna with high port isolation and low radiation correlation for 2.4/5/6 GHz WiFi-6E 4 x 4 MIMO Access Points," IEEE Access, Vol. 10, 81296-81308, 2022.
doi:10.1109/ACCESS.2022.3196025

8. Zhang, W., Y. Li, K. Wei, and Z. Zhan, "A two-port microstrip antenna with high isolation for Wi-Fi 6 and Wi-Fi 6E applications," IEEE Transactions on Antennas and Propag., Vol. 70, No. 7, 5227-5234, 2022.
doi:10.1109/TAP.2022.3145439

9. Jiang, H., N. Yan, K. Ma, and Y. Wang, "A wideband circularly polarized dielectric patch antenna with a modified air cavity for Wi-Fi 6 and Wi-Fi 6E applications," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 1, 213-217, 2023.
doi:10.1109/LAWP.2022.3201077

10. Cao, Z., K. Wei, and Z. Zhang, "Low-cost compact omnidirectional antenna for tri-band Wi-Fi 6E applications," Microwave and Optical Technology Letters, Vol. 64, No. 11, 2052-2058, 2022.
doi:10.1002/mop.33395

11. Cao, Z., K. Wei, and Z. Zhang, "Low-cost compact omnidirectional antenna for tri-band Wi-Fi 6E applications," Microwave and Optical Technology Letters, Vol. 64, No. 11, 2052-2058, 2022.
doi:10.1002/mop.33395

12. Wheeler, A. H., "Small antennas," IEEE Trans on Antenna Propag., Vol. 23, 462-469, 1975.
doi:10.1109/TAP.1975.1141115

13. Liu, Y., H.-H. Kim, and H. Kim, "Loop-type ground radiation antenna for dual-band WLAN applications," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4819-4823, 2013.
doi:10.1109/TAP.2013.2267716

14. Zahid, Z. and H. Kim, "Analysis of a loop type ground radiation antenna based on equivalent circuit model," IET Microw. Antennas Propag., Vol. 11, No. 1, 23-28, 2016.
doi:10.1049/iet-map.2016.0250

15. Qu, L., Z. Zahid, H.-H. Kim, and H. Kim, "Circular polarized ground radiation antenna for mobile applications," IEEE Trans. Antennas Propag., Vol. 66, No. 5, 2655-2660, 2018.
doi:10.1109/TAP.2018.2811840

16. Jeon, S., Y. Liu, S. Ju, and H. Kim, "PIFA with parallel resonance feed structure for wideband operation," Electronics Letters, Vol. 47, No. 23, 1263-1265, 2011.
doi:10.1049/el.2011.2843

17. Lee, J., Y. Liu, and H. Kim, "Mobile antenna using multi-resonance feed structure for wideband operation," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5851-5855, 2014.
doi:10.1109/TAP.2014.2346534

18. Lee, J., "Miniaturized WLAN antenna in mobile handset with wide impedance bandwidth characteristic," Microwave and Optical Technology Letters, Vol. 55, No. 12, 2841-2844, 2013.
doi:10.1002/mop.27975

19. Lee, H., J. Jihwan, D. Park, H. Shin, and H. Kim, "MIMO antenna performance with isolator," Microwave and Optical Technology Letters, Vol. 55, No. 5, 946-952, 2022.
doi:10.1002/mop.33212

20. Zahid, Z., L. Qu, H. H. Kim, and H. Kim, "Decoupler design for MIMO antennas of USB dongle applications using ground mode coupling analysis," Progress In Electromagnetics Research M, Vol. 76, 113-122, 2018.
doi:10.2528/PIERM18092604

21. Qu, L., R. Zhang, and H. Kim, "Decoupling between ground radiation antennas with ground- coupled loop-type isolator for WLAN applications," IET Microw. Antennas Propag., Vol. 10, 546-552, 2016.
doi:10.1049/iet-map.2015.0562

22. Baloch, B. A., L. Qu, Z. Zahid, and A. A. Khan, "A wideband decoupling method using bezel-coupled loop-type isolator for smartwatch MIMO applications," International Journal of Microwave and Wireless Technologies, 1-11, 2022.

23. Cai, A., K.-Y. Kai, and W.-J. Liao, "A WLAN/WiFi-6E MIMO antenna design for handset devices," 2021 International Symposium on Antennas and Propagation (ISAP), 2021.

24. Jhang, W.-C. and J.-S. Sun, "Small antenna design of triple band for WIFI 6E and WLAN applications in the narrow border laptop computer," International Journal of Antennas and Propagation, 2021.
doi:10.1155/2021/7334206

25. Sim, C.-Y.-D., J. Kulkarni, S.-H.Wang, S.-Y. Zheng, Z.-H. Lin, and S.-C. Chen, "Low profile laptop antenna design for Wi-Fi 6E band," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 1, 79-83, 2023.
doi:10.1109/LAWP.2022.3202697

26. Su, S.-W., D. P. Yusuf, and F.-H. Chu, "Conjoined, Wi-Fi 6E MIMO antennas for laptops," 2021 International Symposium on Antennas and Propagation (ISAP), 2021.

27. Su, S.-W. and C.-C. Wan, "Asymmetrical, self-isolated laptop antenna in the 2.4/5/6 GHz Wi-Fi 6E bands," International Symposium on Antennas and Propagation (ISAP), 2021.

28. Harrington, R. F., Time Harmonic Electromagnetics, 2nd Ed., Wiley IEEE Press, 2001.
doi:10.1109/9780470546710

29. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Trans. Veh. Technol., Vol. 36, 149-172, 1987.
doi:10.1109/T-VT.1987.24115

30. Zahra, H., W. A. Awan, A. W. Hussain, S. M. Abbas, and A. A. Mukhopadhyay, "28 GHz broadband helical inspired end-fire antenna and its MIMO configuration for 5G pattern diversity applications," Electronics, Vol. 10, 405, 2021.
doi:10.3390/electronics10040405