1. Garcia de Abajo, F. J., "Colloquium: Light scattering by particle and hole arrays," Reviews of Modern Physics, Vol. 79, 1267-1290, 2007.
doi:10.1103/RevModPhys.79.1267 Google Scholar
2. Garcia-Vidal, F. J., L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Reviews of Modern Physics, Vol. 82, 729-787, 2010.
doi:10.1103/RevModPhys.82.729 Google Scholar
3. Schuller, J. A., E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nature Materials, Vol. 9, 193-204, 2010.
doi:10.1038/nmat2630 Google Scholar
4. Dombi, P., Z. Papa, J. Vogelsang, S. V. Yalunin, M. Sivis, G. Herink, S. Schafer, P. Groβ, C. Ropers, and C. Lienau, "Strong-field nano-optics," Reviews of Modern Physics, Vol. 92, 025003, 2020.
doi:10.1103/RevModPhys.92.025003 Google Scholar
5. Rajabali, S., E. Cortese, M. Beck, S. De Liberato, J. Faist, and G. Scalari, "Polaritonic nonlocality in light-matter interaction," Nature Photonics, Vol. 15, 690-695, 2021.
doi:10.1038/s41566-021-00854-3 Google Scholar
6. Lu, M. H., X. K. Liu, L. Feng, J. Li, C. P. Huang, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, "Extraordinary acoustic transmission through a 1D grating with very narrow apertures," Physical Review Letters, Vol. 99, 174301, 2007.
doi:10.1103/PhysRevLett.99.174301 Google Scholar
7. Christensen, J., L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of resonant acoustic transmission through subwavelength apertures," Physical Review Letters, Vol. 101, 014301, 2008.
doi:10.1103/PhysRevLett.101.014301 Google Scholar
8. Estrada, H., F. J. Garcia de Abajo, P. Candelas, A. Uris, F. Belmar, and F. Meseguer, "Angle-dependent ultrasonic transmission through plates with subwavelength hole arrays," Physical Review Letters, Vol. 102, 144301, 2009.
doi:10.1103/PhysRevLett.102.144301 Google Scholar
9. Zhu, J., J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia- Vidal, "A holey-structured metamaterial for acoustic deep-subwavelength imaging," Nature Physics, Vol. 7, 52-55, 2010.
doi:10.1038/nphys1804 Google Scholar
10. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667-669, 1998.
doi:10.1038/35570 Google Scholar
11. Hanham, S. M., A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, "Broadband terahertz plasmonic response of touching InSb disks," Advanced Materials, Vol. 24, OP226-230, 2012.
doi:10.1002/adma.201202003 Google Scholar
12. Seo, M. A., H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nature Photonics, Vol. 3, 152-156, 2009.
doi:10.1038/nphoton.2009.22 Google Scholar
13. Gomez Rivas, J., C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Physical Review B, Vol. 68, 201306, 2003.
doi:10.1103/PhysRevB.68.201306 Google Scholar
14. Qu, D., D. Grischkowsky, and W. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Optics Express, Vol. 29, 896-898, 2004. Google Scholar
15. Azad, A. K. and W. Zhang, "Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness," Optics Express, Vol. 30, 2945-2947, 2005. Google Scholar
16. Rivas, J. G., C. Janke, P. H. Bolivar, and H. Kurz, "Transmission of THz radiation through InSb gratings of subwavelength apertures," Optics Express, Vol. 13, 847-859, 2005.
doi:10.1364/OPEX.13.000847 Google Scholar
17. Lee, J. W., M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets," Physical Review Letters, Vol. 99, 137401, 2007.
doi:10.1103/PhysRevLett.99.137401 Google Scholar
18. Chen, H.-T., H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O'Hara, and A. J. Taylor, "Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays," Optics Express, Vol. 16, 7641-7648, 2008.
doi:10.1364/OE.16.007641 Google Scholar
19. Masson, J.-B., A. Podzorov, and G. Gallot, "Extended Fano model of extraordinary electromagnetic transmission through subwavelength hole arrays in the terahertz domain," Optics Express, Vol. 17, 15280-15291, 2009.
doi:10.1364/OE.17.015280 Google Scholar
20. Wu, J., H. Dai, H. Wang, B. Jin, T. Jia, C. Zhang, C. Cao, J. Chen, L. Kang, W. Xu, and P. Wu, "Extraordinary terahertz transmission in superconducting subwavelength hole array," Optics Express, Vol. 19, 1101-1106, 2011.
doi:10.1364/OE.19.001101 Google Scholar
21. Gao, W., J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu, "High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures," Nano Letters, Vol. 14, 1242-1248, 2014.
doi:10.1021/nl4041274 Google Scholar
22. Banerjee, S., N. Lok Abhishikth, S. Karmakar, D. Kumar, S. Rane, S. Goel, A. K. Azad, and D. Roy Chowdhury, "Modulating extraordinary terahertz transmissions in multilayer plasmonic metasurfaces," Journal of Optics, Vol. 22, 125101, 2020.
doi:10.1088/2040-8986/abc1c6 Google Scholar
23. Ren, X.-P., R.-H. Fan, R.-W. Peng, X.-R. Huang, D.-H. Xu, Y. Zhou, and M. Wang, "Nonperiodic metallic gratings transparent for broadband terahertz waves," Physical Review B, Vol. 91, 045111, 2015.
doi:10.1103/PhysRevB.91.045111 Google Scholar
24. Nguyen, T. K., P. T. Dang, I. Park, and K. Q. Le, "Broadband THz radiation through tapered semiconductor gratings on high-index substrate," Journal of the Optical Society of America B, Vol. 34, 583-589, 2017.
doi:10.1364/JOSAB.34.000583 Google Scholar
25. Song, J., Y. Shi, X. Liu, M. Li, X. Wang, and F. Yang, "Enhanced broadband extraordinary terahertz transmission through plasmon coupling between metal hemisphere and hole arrays," Optical Materials Express, Vol. 11, 2700-2710, 2021.
doi:10.1364/OME.430500 Google Scholar
26. Huang, X. R., R. W. Peng, and R. H. Fan, "Making metals transparent for white light by spoof surface plasmons," Physical Review Letters, Vol. 105, 243901, 2010.
doi:10.1103/PhysRevLett.105.243901 Google Scholar
27. Alu, A., G. D'Aguanno, N. Mattiucci, and M. J. Bloemer, "Plasmonic brewster angle: Broadband extraordinary transmission through optical gratings," Physical Review Letters, Vol. 106, 123902, 2011.
doi:10.1103/PhysRevLett.106.123902 Google Scholar
28. Subramania, G., S. Foteinopoulou, and I. Brener, "Nonresonant broadband funneling of light via ultrasubwavelength channels," Physical Review Letters, Vol. 107, 163902, 2011.
doi:10.1103/PhysRevLett.107.163902 Google Scholar
29. Fan, R. H., R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, X. Zhang, and , "Transparent metals for ultrabroadband electromagnetic waves," Advanced Materials, Vol. 24, 1980-1986, 2012.
doi:10.1002/adma.201104483 Google Scholar
30. Liao, Z., A. I. Fernandez-Dominguez, J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, "Homogenous metamaterial description of localized spoof plasmons in spiral geometries," ACS Photonics, Vol. 3, 1768-1775, 2016.
doi:10.1021/acsphotonics.6b00488 Google Scholar
31. Kong, J. A., Electromagnetic Wave Theory, Wiley, 2008.
32. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Vol. III, Advanced Topics, Wiley, 2001.
doi:10.1002/0471224278
33. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Vol. II, Numerical Simulations, Wiley, 2001.
doi:10.1002/0471224308
34. Kushta, T. and K. Yasumoto, "Electromagnetic scattering from periodic arrays of two circular cylinders per unit cell," Progress In Electromagnetics Research, Vol. 29, 69-85, 2000.
doi:10.2528/PIER99103101 Google Scholar
35. Liang, Z. and J. Li, "Extreme acoustic metamaterial by coiling up space," Physical Review Letters, Vol. 108, 114301, 2012.
doi:10.1103/PhysRevLett.108.114301 Google Scholar
36. Cheng, Y., C. Zhou, B. G. Yuan, D. J. Wu, Q. Wei, and X. J. Liu, "Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances," Nature Materials, Vol. 14, 1013-1019, 2015.
doi:10.1038/nmat4393 Google Scholar
37. Liu, F., S. Zhang, L. Luo, W. Li, Z. Wang, and M. Ke, "Superscattering of sound by a deep-subwavelength solid mazelike rod," Physical Review Applied, Vol. 12, 064063, 2019.
doi:10.1103/PhysRevApplied.12.064063 Google Scholar
38. Yang, Z., F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, "Topological acoustics," Physical Review Letters, Vol. 114, 114301, 2015.
doi:10.1103/PhysRevLett.114.114301 Google Scholar
39. Xue, H., Y. Yang, F. Gao, Y. Chong, and B. Zhang, "Acoustic higher-order topological insulator on a kagome lattice," Nature Materials, Vol. 18, 108-112, 2019.
doi:10.1038/s41563-018-0251-x Google Scholar